931 resultados para renewable energy production
Resumo:
172
Resumo:
Against a backdrop of rapidly increasing worldwide population and growing energy demand, the development of renewable energy technologies has become of primary importance in the effort to reduce greenhouse gas emissions. However, it is often technically and economically infeasible to transport discontinuous renewable electricity for long distances to the shore. Another shortcoming of non-programmable renewable power is its integration into the onshore grid without affecting the dispatching process. On the other hand, the offshore oil & gas industry is striving to reduce overall carbon footprint from onsite power generators and limiting large expenses associated to carrying electricity from remote offshore facilities. Furthermore, the increased complexity and expansion towards challenging areas of offshore hydrocarbons operations call for higher attention to safety and environmental protection issues from major accident hazards. Innovative hybrid energy systems, as Power-to-Gas (P2G), Power-to-Liquid (P2L) and Gas-to-Power (G2P) options, implemented at offshore locations, would offer the opportunity to overcome challenges of both renewable and oil & gas sectors. This study aims at the development of systematic methodologies based on proper sustainability and safety performance indicators supporting the choice of P2G, P2L and G2P hybrid energy options for offshore green projects in early design phases. An in-depth analysis of the different offshore hybrid strategies was performed. The literature reviews on existing methods proposing metrics to assess sustainability of hybrid energy systems, inherent safety of process routes in conceptual design stage and environmental protection of installations from oil and chemical accidental spills were carried out. To fill the gaps, a suite of specific decision-making methodologies was developed, based on representative multi-criteria indicators addressing technical, economic, environmental and societal aspects of alternative options. A set of five case-studies was defined, covering different offshore scenarios of concern, to provide an assessment of the effectiveness and value of the developed tools.
Resumo:
Sustainability is frequently defined by its three pillars: economically viable, socially equitable, and environmentally bearable. Consequently the evaluation of the sustainability of any decision, public or private, requires information on these three dimensions. This paper focuses on social sustainability. In the context of renewable energy sources, the examination of social sustainability requires the analysis of not only the efficiency but also the equity of its welfare impacts. The present paper proposes and applies a methodology to generate the information necessary to do a proper welfare analysis of the social sustainability of renewable energy production facilities. This information is key both for an equity and an efficiency analysis. The analysis focuses on the case of investments in renewable energy electricity production facilities, where the impacts on local residents’ welfare are often significantly different than the welfare effects on the general population. We apply the contingent valuation method to selected facilities across the different renewable energy power plants located in Portugal and conclude that local residents acknowledge differently the damage sustained by the type, location and operation of the plants. The results from these case studies attest to the need of acknowledging and quantifying the negative impacts on local communities when assessing the economic viability, social equity and environmental impact of renewable energy projects.
Resumo:
The energy system of Russia is the world's fourth largest measured by installed power. The largest are that of the the United States of America, China and Japan. After 1990, the electricity consumption decreased as a result of the Russian industry crisis. The vivid economic growth during the latest few years explains the new increase in the demand for energy resources within the State. In 2005 the consumption of electricity achieved the maximum level of 1990 and continues to growth. In the 1980's, the renewal of power facilities was already very slow and practically stopped in the 1990's. At present, the energy system can be very much characterized as outdated, inefficient and uneconomic because of the old equipment, non-effective structure and large losses in the transmission lines. The aim of Russia's energy reform, which was started in 2001, is to achieve a market based energy policy by 2011. This would thus remove the significantly state-controlled monopoly in Russia's energy policy. The reform will stimulateto decrease losses, improve the energy system and employ energy-saving technologies. The Russian energy system today is still based on the use of fossil fuels, and it almost totally ignores the efficient use of renewable sources such as wind, solar, small hydro and biomass, despite of their significant resources in Russia. The main target of this project is to consider opportunities to apply renewable energy production in the North-West Federal Region of Russia to partly solve the above mentioned problems in the energy system.
Resumo:
Le Traité de Marrakech stipule que le commerce et le développement économique devraient être orientés de manière à permettre l’utilisation optimale des ressources mondiales, conformément à l’objectif de développement durable. Combiné aux dispositions du Protocole de Kyoto et du Traité de Copenhague, les gouvernements poursuivent de politiques nationales favorisant les producteurs nationaux au détriment des étrangers. Cette mémoire propose une analyse des règles de l’OMC, dans le but de déterminer les mesures disciplinaires possibles contre le Canada à l'égard de ses mécanismes de support de l’énergie renouvelable. Une analyse des règles énoncées dans le GATT, l’Accord sur les subventions et les mesures compensatoires et divers accords multilatéraux conclus dans le cadre de l’OMC permet de déterminer si elles pourraient s’appliquer aux mécanismes de support de l’énergie renouvelable. Une analyse des programmes du Québec et de l’Ontario permet une prise de position quant à leur conformité aux règles commerciales de l’OMC.
Resumo:
Beside the traditional paradigm of "centralized" power generation, a new concept of "distributed" generation is emerging, in which the same user becomes pro-sumer. During this transition, the Energy Storage Systems (ESS) can provide multiple services and features, which are necessary for a higher quality of the electrical system and for the optimization of non-programmable Renewable Energy Source (RES) power plants. A ESS prototype was designed, developed and integrated into a renewable energy production system in order to create a smart microgrid and consequently manage in an efficient and intelligent way the energy flow as a function of the power demand. The produced energy can be introduced into the grid, supplied to the load directly or stored in batteries. The microgrid is composed by a 7 kW wind turbine (WT) and a 17 kW photovoltaic (PV) plant are part of. The load is given by electrical utilities of a cheese factory. The ESS is composed by the following two subsystems, a Battery Energy Storage System (BESS) and a Power Control System (PCS). With the aim of sizing the ESS, a Remote Grid Analyzer (RGA) was designed, realized and connected to the wind turbine, photovoltaic plant and the switchboard. Afterwards, different electrochemical storage technologies were studied, and taking into account the load requirements present in the cheese factory, the most suitable solution was identified in the high temperatures salt Na-NiCl2 battery technology. The data acquisition from all electrical utilities provided a detailed load analysis, indicating the optimal storage size equal to a 30 kW battery system. Moreover a container was designed and realized to locate the BESS and PCS, meeting all the requirements and safety conditions. Furthermore, a smart control system was implemented in order to handle the different applications of the ESS, such as peak shaving or load levelling.
Resumo:
Renewable energy forms have been widely used in the past decades highlighting a "green" shift in energy production. An actual reason behind this turn to renewable energy production is EU directives which set the Union's targets for energy production from renewable sources, greenhouse gas emissions and increase in energy efficiency. All member countries are obligated to apply harmonized legislation and practices and restructure their energy production networks in order to meet EU targets. Towards the fulfillment of 20-20-20 EU targets, in Greece a specific strategy which promotes the construction of large scale Renewable Energy Source plants is promoted. In this paper, we present an optimal design of the Greek renewable energy production network applying a 0-1 Weighted Goal Programming model, considering social, environmental and economic criteria. In the absence of a panel of experts Data Envelopment Analysis (DEA) approach is used in order to filter the best out of the possible network structures, seeking for the maximum technical efficiency. Super-Efficiency DEA model is also used in order to reduce the solutions and find the best out of all the possible. The results showed that in order to achieve maximum efficiency, the social and environmental criteria must be weighted more than the economic ones.
Resumo:
Tässä diplomityössä tarkastellaan täysin uusiutuvaa energiajärjestelmää Etelä-Karjalan maakunnan alueella, mikä onkin jo tällä hetkellä Suomen uusiutuvin maakunta. Diplomityössä tarkastellaan julkisen sektorin, liikenteen ja rakennusten energian kulutusta mutta teollisuuden energiankäyttö jätetään tarkastelun ulkopuolelle. Työssä tutustutaan tämän hetken Etelä-Karjalan energiajärjestelmään ja sen perusteella tehdään referenssi-skenaario. Tulevaisuuden skenaariot tehdään vuosille 2030 ja 2050. Tulevaisuuden skenaarioissa muutos keskittyy järjestelmän sähköistymiseen ja uusiutuvien tuotantomuotojen integroimiseen järjestelmään. Sähköistyminen kasvattaa sähkönkulutusta, joka pyritään kattamaan uusiutuvilla tuotantomuodoilla, lähinnä tuuli- ja aurinkovoimalla. Liikennesektori rajataan kumipyöräliikenteeseen ja sen muutos tulee olemaan haastavin ja aikaa vievin. Muutokseen pyritään liikennepolttoaineiden tuotannolla maakunnassa sekä sähköautoilulla. Uusiutuva energiajärjestelmä tarvitsee tuotannon ja kysynnän joustoa sekä älyä järjestelmältä. Työssä tarkastellaan myös järjestelmän kustannuksia sekä työllisyysvaikutuksia.
Resumo:
In the past decade, Spain’s generous incentive system for renewable energy production attracted substantial foreign and national investment. However, when the global financial crisis hit, and the consequent reduction of electricity consumption, the incentives began to cause a tariff deficit in the electricity system, leading the Spanish government to cut back and then eliminate the incentives. In the wake of losses, international investors turned to investment arbitration, while national investors could only present their claims before Spanish courts. The result was a potential for differential treatment between national and foreign investors. This paper examines the incentive regime and the government’s changes to it in order to understand the investors’ claims and the reasoning that resulted in their rejections, both in national courts and in the only arbitration award issued up to now. The paper concludes with a discussion of the effect of the renewable energies situation on the investment arbitration debate within Spanish civil society.
Resumo:
The purpose of this article is to analyse and evaluate the economical, energetic and environmental impacts of the increasing penetration of renewable energies and electrical vehicles in isolated systems, such as Terceira Island in Azores and Madeira Island. Given the fact that the islands are extremely dependent on the importation of fossil fuels - not only for the production of energy, but also for the transportation’s sector – it’s intended to analyse how it is possible to reduce that dependency and determine the resultant reduction of pollutant gas emissions. Different settings have been analysed - with and without the penetration of EVs. The Terceira Island is an interesting case study, where EVs charging during off-peak hours could allow an increase in geothermal power, limited by the valley of power demand. The percentage of renewable energy in the electric power mix could reach the 74% in 2030 while at the same time, it is possible to reduce the emissions of pollutant gases in 45% and the purchase of fossil fuels in 44%. In Madeira, apart from wind, solar and small hydro power, there are not so many endogenous resources and the Island’s emission factor cannot be so reduced as in Terceira. Although, it is possible to reduce fossil fuels imports and emissions in 1.8% in 2030 when compared with a BAU scenario with a 14% of the LD fleet composed by EVs.
Resumo:
The purpose of this article is to analyse and evaluate the economical, energetic and environmental impacts of the increasing penetration of renewable energies and electrical vehicles in isolated systems, such as Terceira Island in Azores and Madeira Island. Given the fact that the islands are extremely dependent on the importation of fossil fuels - not only for the production of energy, but also for the transportation’s sector – it’s intended to analyse how it is possible to reduce that dependency and determine the resultant reduction of pollutant gas emissions. Different settings have been analysed - with and without the penetration of EVs. The Terceira Island is an interesting case study, where EVs charging during off-peak hours could allow an increase in geothermal power, limited by the valley of power demand. The percentage of renewable energy in the electric power mix could reach the 74% in 2030 while at the same time, it is possible to reduce the emissions of pollutant gases in 45% and the purchase of fossil fuels in 44%. In Madeira, apart from wind, solar and small hydro power, there are not so many endogenous resources and the Island’s emission factor cannot be so reduced as in Terceira. Although, it is possible to reduce fossil fuels imports and emissions in 1.8% in 2030 when compared with a BAU scenario with a 14% of the LD fleet composed by EVs.
Resumo:
The federal government is aggressively promoting biofuels as an answer to global climate change and dependence on imported sources of energy. Iowa has quickly become a leader in the bioeconomy and wind energy production, but meeting the United States Department of Energy’s goal having 20% of U.S. transportation fuels come from biologically based sources by 2030 will require a dramatic increase in ethanol and biodiesel production and distribution. At the same time, much of Iowa’s rural transportation infrastructure is near or beyond its original design life. As Iowa’s rural roadway structures, pavements, and unpaved roadways become structurally deficient or functionally obsolete, public sector maintenance and rehabilitation costs rapidly increase. More importantly, costs to move all farm products will rapidly increase if infrastructure components are allowed to fail; longer hauls, slower turnaround times, and smaller loads result. When these results occur on a large scale, Iowa will start to lose its economic competitive edge in the rapidly developing bioeconomy. The primary objective of this study was to document the current physical and fiscal impacts of Iowa’s existing biofuels and wind power industries. A four-county cluster in north-central Iowa and a two-county cluster in southeast Iowa were identified through a local agency survey as having a large number of diverse facilities and were selected for the traffic and physical impact analysis. The research team investigated the large truck traffic patterns on Iowa’s secondary and local roads from 2002 to 2008 and associated those with the pavement condition and county maintenance expenditures. The impacts were quantified to the extent possible and visualized using geographic information system (GIS) tools. In addition, a traffic and fiscal assessment tool was developed to understand the impact of the development of the biofuels on Iowa’s secondary road system. Recommended changes in public policies relating to the local government and to the administration of those policies included standardizing the reporting and format of all county expenditures, conducting regular pavement evaluations on a county’s system, cooperating and communicating with cities (adjacent to a plant site), considering utilization of tax increment financing (TIF) districts as a short-term tool to produce revenues, and considering alternative ways to tax the industry.
Resumo:
The threat of global warming and its consequences are widely recognized, and the question of how to proceed with the long transition towards fossil fuel -neutral economies concerns many nations and people. At the same time the world’s primary energy use is predicted to increase significantly during the next decades as a result of global population and welfare increase. Improved energy efficiency and increased use of renewable energy sources in the world’s energy mix play important roles in the future energy production and consumption. The objective of this thesis is to study how novel renewable energy technologies, such as distributed small-scale bio-fueled combined heat and power production and wind power technologies could be commercialized efficiently. A wide array of attributes may contribute to the diffusion of new products. In general, the bioenergy and wind power technologies are in emerging phases, and the diffusion stage varies from country to country. The effects of firms’ technology choices, collaboration and alliances are studied in this thesis. Furthermore, the roles of national energy infrastructure and energy support schemes in the commercialization of new renewable energy products are explored. The empirical data is based on energy expert interviews, financial and patent data, and literature reviews of different case studies. The thesis comprises two parts. The first part provides an overview of the study, and the second part includes six research publications. The results reveal that small-scale bio-fueled combined heat and power production and wind power technologies are still in emerging phases in their life cycles, and energy support schemes are crucial in the market diffusion. The study contributes to earlier findings in the literature and industry by confirming that adequate energy policies and energy infrastructure are fundamental in the commercialization of novel renewable energy technologies. Firm-specific issues, including business relationships and new business models, and market-related issues will have a more significant role in the market penetration in the future, when the technologies mature and become competitive without political support schemes.
Resumo:
The greatest threat that the biodegradable waste causes on the environment is the methane produced in landfills by the decomposition of this waste. The Landfill Directive (1999/31/EC) aims to reduce the landfilling of biodegradable waste. In Finland, 31% of biodegradable municipal waste ended up into landfills in 2012. The pressure of reducing disposing into landfills is greatly increased by the forthcoming landfill ban on biodegradable waste in Finland. There is a need to discuss the need for increasing the utilization of biodegradable waste in regional renewable energy production to utilize the waste in a way that allows the best possibilities to reduce GHG emissions. The objectives of the thesis are: (1) to find important factors affecting renewable energy recovery possibilities from biodegradable waste, (2) to determine the main factors affecting the GHG balance of biogas production system and how to improve it and (3) to find ways to define energy performance of biogas production systems and what affects it. According to the thesis, the most important factors affecting the regional renewable energy possibilities from biodegradable waste are: the amount of available feedstock, properties of feedstock, selected utilization technologies, demand of energy and material products and the economic situation of utilizing the feedstocks. The biogas production by anaerobic digestion was seen as the main technology for utilizing biodegradable waste in agriculturally dense areas. The main reason for this is that manure was seen as the main feedstock, and it can be best utilized with anaerobic digestion, which can produce renewable energy while maintaining the spreading of nutrients on arable land. Biogas plants should be located close to the heat demand that would be enough to receive the produced heat also in the summer months and located close to the agricultural area where the digestate could be utilized. Another option for biogas use is to upgrade it to biomethane, which would require a location close to the natural gas grid. The most attractive masses for biogas production are municipal and industrial biodegradable waste because of gate fees the plant receives from them can provide over 80% of the income. On the other hand, directing gate fee masses for small-scale biogas plants could make dispersed biogas production more economical. In addition, the combustion of dry agricultural waste such as straw would provide a greater energy amount than utilizing them by anaerobic digestion. The complete energy performance assessment of biogas production system requires the use of more than one system boundary. These can then be used in calculating output–input ratios of biogas production, biogas plant, biogas utilization and biogas production system, which can be used to analyze different parts of the biogas production chain. At the moment, it is difficult to compare different biogas plants since there is a wide variation of definitions for energy performance of biogas production. A more consistent way of analyzing energy performance would allow comparing biogas plants with each other and other recovery systems and finding possible locations for further improvement. Both from the GHG emission balance and energy performance point of view, the energy consumption at the biogas plant was the most significant factor. Renewable energy use to fulfil the parasitic energy demand at the plant would be the most efficient way to reduce the GHG emissions at the plant. The GHG emission reductions could be increased by upgrading biogas to biomethane and displacing natural gas or petrol use in cars when compared to biogas CHP production. The emission reductions from displacing mineral fertilizers with digestate were seen less significant, and the greater N2O emissions from spreading digestate might surpass the emission reductions from displacing mineral fertilizers.