979 resultados para renal effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the variability of the response to exogenous atrial natriuretic peptide (ANP), it was infused at the rate of 1 microgram/min for 2 h in 6 salt-loaded normal volunteers under controlled conditions on 2 occasions at an interval of 1 week. The effect on solute excretion and the haemodynamic and endocrine actions were highly reproducible. The constant ANP infusion caused a delayed and prolonged excretion of sodium, chloride and calcium, no change in potassium or phosphate excretion or in glomerular filtration rate but a marked decrease in renal plasma flow. Blood pressure, heart rate and the plasma levels of angiotensin II, aldosterone, arginine vasopressin and plasma renin activity were unaltered. The effect of a 2-h infusion of ANP 0.5 microgram/min or its vehicle on apparent hepatic blood flow (HBF) was also studied in 14 normal volunteers by measuring the indocyanine green clearance. A 21% decrease in HBF was observed in subjects who received the ANP infusion (p less than 0.01 vs vehicle). Thus, ANP infused at a dose that did not lower blood pressure decreased both renal and liver blood flow in normotensive volunteers. The renal and endocrine responses to ANP were reproducible over a 1-week interval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tityus serrulatus, popularly known as yellow scorpion, is one of the most studied scorpion species in South America and its venom has supplied some highly active molecules. The effects of T. serrulatus venom upon the renal physiology in human showed increased renal parameters, urea and creatinine. However, in perfused rat kidney the effects were not tested until now. Isolated kidneys from Wistar rats, weighing 240-280 g, were perfused with Krebs-Henseleit solution containing 6% (g weight) of previously dialysed bovine serum albumin. The effects of T. serrulatus venom were studied on the perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), sodium tubular transport (%TNa+), potassium tubular transport (%TK+) and chloride tubular transport (%TCl-). Tityus serrulatus venom (TsV; 10 mu g/mL) was added to the system 30 min after the beginning of each experiment (n = 6). This 30 min period was used as an internal control. The mesenteric bed was perfused with Krebs solution kept warm at 37 T by a constant flow (4 mL/min), while the variable perfusion pressure was measured by means of a pressure transducer. The direct vascular effects of TsV (10 mu g/mL/min; n=6), infused at a constant rate (0.1 mL/min), were examined and compared to the infusion of the vehicle alone at the same rate. TsV increased PP (PP30'= 127.8 +/- 0.69 vs PP60' = 154.2 +/- 14 mmHg*, *p < 0.05) and RVR (RVR30' = 6.29 +/- 0.25 vs RVR60' = 8.03 +/- 0.82 mmHg/mL g(-1) min(-1)*, *p < 0.05), decreased GFR (GFR(30') =0.58 +/- 0.02 vs GFR(60') = 0.46 +/- 0.01 mL g(-1) min(-1)*, *p < 0.05) and UF (UF30' = 0.135 +/- 0.001 vs UF60' = 0.114 +/- 0.003 mL g(-1)min(-1)*, *p < 0.05). Tubular transport was not affected during the whole experimental period (120 min). on the other hand, the infusion of TsV (10 mu g/mL/min) increased the basal perfusion pressure of isolated arteriolar mesenteric bed (basal pressure: 74.17 +/- 3.42 vs TsV 151.8 +/- 17.82 mmHg*, *p < 0.05). TsV affects renal haemodynamics probably by a direct vasoconstrictor action leading to decreased renal flow. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renal changes determined by Lys49 myotoxin I (BmTx I), isolated from Bothrops moojeni are well known. The scope of the present study was to investigate the possible mechanisms involved in the production of these effects by using indomethacin (10 mu g/mL), a non-selective inhibitor of cyclooxygenase, and tezosentan (10 mu g/mL), an endothelin antagonist. By means of the method of mesenteric vascular bed, it has been observed that B. moojeni myotoxin (5 mu g/mL) affects neither basal perfusion pressure nor phenylephrine-preconstricted vessels. This fact suggests that the increase in renal perfusion pressure and in renal vascular resistance did not occur by a direct effect on renal vasculature. Isolated kidneys from Wistar rats, weighing 240-280 g, were perfused with Krebs-Henseleit solution. The infusion of BmTx-I increased perfusion pressure, renal vascular resistance, urinary flow and glomerular filtration rate. Sodium, potassium and chloride tubular transport was reduced after addition of BmTx-I. Indomethacin blocked the effects induced by BmTx-I on perfusion pressure and renal vascular resistance, however, it did not revert the effect on urinary flow and sodium, potassium and chloride tubular transport. The alterations of glomerular filtration rate were inhibited only at 90 min of perfusion. The partial blockade exerted by indomethacin treatment showed that prostaglandins could have been important mediators of BmTx-I renal effects, but the participation of other substances cannot be excluded.The blockage of all renal alterations observed after tezosentan treatment support the hypothesis that endothelin is the major substance involved in the renal pathophysiologic alterations promoted by the Lys49 PLA(2) myotoxin I, isolated from B. moojeni. In conclusion, the rather intense renal effects promoted by B. moojeni myotoxin-I were probably caused by the release of renal endothelin, interfering with the renal parameters studied. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bothrops insularis venom contains a variety of substances presumably responsible for several pharmacological effects. We investigated the biochemical and biological effects of phospholipase A(2) protein isolated from B. insularis venom and the chromatographic profile showed 7 main fractions and the main phospholipase A(2) (PLA(2)) enzymatic activity was detected in fractions IV and V. Fraction IV was submitted to a new chromatographic procedure on ion exchange chromatography, which allowed the elution of 5 main fractions designated as lV-1 to IV-5, from which lV-4 constituted the main fraction. The molecular homogeneity of this fraction was characterized by high-performance liquid chromatography (HPLC) and demonstrated by mass spectrometry (MS), which showed a molecular mass of 13984.20 Da; its N-terminal sequence presented a high amino acid identity (up to 95%) with the PLA(2) of Bothrops jararaca and Bothrops asper. Phospholipase A(2) isolated from B. insularis (Bi PLA(2)) venom (10 mu g/mL) was also studied as to its effect on the renal function of isolated perfused kidneys of Wistar rats (n = 6). Bi PLA(2) increased perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF) and glomerular filtration rate (GFR). Sodium (%TNa+) and chloride tubular reabsorption (%TCl-) decreased at 120 min, without alteration in potassium transport. In conclusion, PLA(2) isolated from B. insularis venom promoted renal alterations in the isolated perfused rat kidney. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Considering the renal effects of fluid resuscitation in hemorrhaged patients, the choice of fluid has been a source of controversy. In a model of hemorrhagic shock, we studied the early hemodynamic and renal effects of fluid resuscitation with lactated Ringer's (LR), 6% hydroxyethyl starch (HES), and 7.5% hypertonic saline (HS) with or without 6% dextran-70 (HSD).Materials and methods. Forty-eight dogs were anesthetized and submitted to splenectomy. An estimated 40% blood volume was removed to maintain mean arterial pressure (MAP) at 40 mm Hg for 30 min. The dogs were divided into four groups: LR, in a 3:1 ratio to removed blood volume; HS, 6 mL kg(-1); HSD, 6 mL kg(-1); and HES in a 1:1 ratio to removed blood volume. Hemodynamics and renal function were studied during shock and 5, 60, and 120 min after fluid replacement.Results. Shock treatment increased MAP similarly in all groups. At 5 min, cardiac filling pressures and cardiac performance indexes were higher for LR and HES but, after 120 min, there were no differences among groups. Renal blood flow and glomerular filtration rate (GFR) were higher in LR at 60 min but GFR returned to baseline values in all groups at 120 min. Diuresis was higher for LR at 5 min and for LR and HES at 60 min. There were no differences among groups in renal variables 120 min after treatment.Conclusions. Despite the immediate differences in hemodynamic responses, the low-volume resuscitation fluids, HS and HSD, are equally effective to LR and HES in restoring renal performance 120 min after hemorrhagic shock treatment. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to analyze the role of alpha(1),alpha(2)-adrenoceptors, and the effects of losartan and PD123319 (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) injected into the paraventricular nucleus (PVN) on the diuresis, natriuresis, and kaliuresis induced by administration of adrenaline into the medial septal area (MSA). Male Holtzman rats with a stainless steel cannula implanted into the MSA and bilaterally into the PVN were used. The administration of adrenaline into the MSA increased in a dose-dependent manner the urine, sodium, and potassium excretions. The previous administration of prazosin (an alpha(1)-adrenoceptor antagonist) injected into the PVN abolished the above effects of adrenaline, whereas yohimbine (an a-adrenoceptor antagonist) doesn't affect the diuresis, natriuresis, and kaliuresis induced by adrenaline. Pretreatment with losartan into the PVN decreased in a dose-dependent manner the urine, sodium, and potassium excretions induced by MSA administration of adrenaline (50 ng), while PVN PD123319 was without effect. These results indicate that urinary and electrolyte excretion effects induced by adrenaline into the MSA are mediated primarily by PVN AT, receptors. However, the doses of losartan were more effective when combined with the doses of PD123319 than given alone, suggesting that the urinary, natriuretic, and kaliuretic effects of MSA adrenaline may involve activation of multiple angiotensin II receptors subtypes into the PVN. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the effects of losartan and CGP42112A (selective ligands of the AT1 and AT2 angiotensin receptors, respectively) and salarasin (a relatively nonselective angiotensin receptor antagonist) on urinary volume and urinary sodium and potassium excretion induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of conscious rats. Both the AT1 and AT2 ligands and salarasin administered in the presence of ANG II elicited a concentration-dependent inhibition of urine excretion, but losartan inhibited only 75% of this response. The IC50 for salarasin, CGP42112A, and losartan was 0.01, 0.05, and 6 nM, respectively. Previous treatment with saralasin, CGP42112A and losartan competitively antagonized the natriuretic responses to PVN administration of ANG II, and the IC50 values were 0.09, 0.48, and 10 nM, respectively. The maximum response to losartan was 65% of that obtained with saralasin. Pretreatment with saralasin, losartan, and CGP42112A injected into the PVN caused shifts to the right of the concentration-response curves, but the losartan concentrations were disproportionately greater compared with salarasin or CGP42112A. The IC50 values were 0.06, 0.5, and 7.0 for salarasin, CGP42112A, and losartan, respectively. These results suggest that both AT1 and AT2 receptor subtypes in the PVN are involved in ANG II-related urine, sodium, and potassium excretion, and that the inhibitory responses to AT2 blockade are predominant. Copyright (C) 1999 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute renal failure is the most common complication in the lethal cases caused by snakebites in Brazil. Among the Brazilian venom snakes, Bothrops erythromelas is responsible for the majority of accidents in Northeastern Brazil. Didelphis marsupialis serum could inhibit myonecrotic, hemorrhagic, edematogenic hyperalgesic and lethal effects of envenomation determined by ophidian bites. In the present study, we evaluated the action of the anti-bothropic factor isolated from D. marsupialis on the renal effects promoted by B. erythromelas venom without systemic interference. Isolated kidneys from Wistar rats were perfused with Krebs-Henseleit solution containing 6% bovine serum albumin. We analyzed renal perfusion pressure (PP), renal vascular resistance (RVR), glomerular filtration rate (GFR), urinary flow (UF), and the percentages of sodium and potassium tubular transport (%TNa +, %TK +). The B. erythromelas venom (10 μg mL -1) decreased the PP (ct=108.71±5.09 mmHg; BE=65.21±5.6 mmHg*) and RVR (ct=5.76±0.65 mmHg mL -1 g -1 min -1; BE=3.10±0.45 mmHg mL -1 g -1 min -1*) . On the other hand, the GFR decreased at 60 min (ct 60=0.76±0. 07 mL g -1 min -1; BE 60=0.42±0.12 mL g -1 min -1*) and increased at 120 min (ct 120=0.72±0.01 mL g -1 min -1; BE 120=1.24±0.26 mL g -1 min -1*). The UF increased significantly when compared with the control group (ct=0.14±0.01 mL g -1 min -1; BE=0.47±0.08 mL g -1 min -1*). The venom reduced the %TNa + (ct 90=79.18±0.88%; BE 90=58.35±4.86%*) and %TK + (ct 90=67.20±4.04%; BE 90=57. 32±5.26%*) The anti-bothropic factor from D. marsupialis (10 μg mL -1) incubated with B. erythromelas venom (10 μg mL -1) blocked the effects on PP, RVR, %TNa +, and %TK +, but was not able to reverse the effects in UF and GFR promoted by venom alone. However, the highest concentration of D. marsupialis serum (30 μg mL -1) reversed all the renal effects induced by the venom. In conclusion, B. erythromelas venom altered all the renal functional parameters evaluated and the anti-bothropic factor from D. marsupialis was able to inhibit the effects induced by the venom in isolated kidney. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian natriuretic peptides (NPs) have been extensively investigated for use as therapeutic agents in the treatment of cardiovascular diseases. Here, we describe the isolation, sequencing and tridimensional homology modeling of the first C-type natriuretic peptide isolated from scorpion venom. In addition, its effects on the renal function of rats and on the mRNA expression of natriuretic peptide receptors in the kidneys are delineated. Fractionation of Tityusserrulatus venom using chromatographic techniques yielded a peptide with a molecular mass of 2190.64Da, which exhibited the pattern of disulfide bridges that is characteristic of a C-type NP (TsNP, T. serrulatus Natriuretic Peptide). In the isolated perfused rat kidney assay, treatment with two concentrations of TsNP (0.03 and 0.1μg/mL) increased the perfusion pressure, glomerular filtration rate and urinary flow. After 60min of treatment at both concentrations, the percentages of sodium, potassium and chloride transport were decreased, and the urinary cGMP concentration was elevated. Natriuretic peptide receptor-A (NPR-A) mRNA expression was down regulated in the kidneys treated with both concentrations of TsNP, whereas NPR-B, NPR-C and CG-C mRNAs were up regulated at the 0.1μg/mL concentration. In conclusion, this work describes the isolation and modeling of the first natriuretic peptide isolated from scorpion venom. In addition, examinations of the renal actions of TsNP indicate that its effects may be related to the activation of NPR-B, NPR-C and GC-C. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tityus serrulatus, popularly known as yellow scorpion, is one of the most studied scorpion species in South America and its venom has supplied some highly active molecules. The effects of T. serrulatus venom upon the renal physiology in human showed increased renal parameters, urea and creatinine. However, in perfused rat kidney the effects were not tested until now. Isolated kidneys from Wistar rats, weighing 240-280 g, were perfused with Krebs-Henseleit solution containing 6% (g weight) of previously dialysed bovine serum albumin. The effects of T. serrulatus venom were studied on the perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), sodium tubular transport (%TNa+), potassium tubular transport (%TK+) and chloride tubular transport (%TCl-). Tityus serrulatus venom (TsV; 10 mu g/mL) was added to the system 30 min after the beginning of each experiment (n = 6). This 30 min period was used as an internal control. The mesenteric bed was perfused with Krebs solution kept warm at 37 T by a constant flow (4 mL/min), while the variable perfusion pressure was measured by means of a pressure transducer. The direct vascular effects of TsV (10 mu g/mL/min; n=6), infused at a constant rate (0.1 mL/min), were examined and compared to the infusion of the vehicle alone at the same rate. TsV increased PP (PP30'= 127.8 +/- 0.69 vs PP60' = 154.2 +/- 14 mmHg*, *p < 0.05) and RVR (RVR30' = 6.29 +/- 0.25 vs RVR60' = 8.03 +/- 0.82 mmHg/mL g(-1) min(-1)*, *p < 0.05), decreased GFR (GFR(30') =0.58 +/- 0.02 vs GFR(60') = 0.46 +/- 0.01 mL g(-1) min(-1)*, *p < 0.05) and UF (UF30' = 0.135 +/- 0.001 vs UF60' = 0.114 +/- 0.003 mL g(-1)min(-1)*, *p < 0.05). Tubular transport was not affected during the whole experimental period (120 min). on the other hand, the infusion of TsV (10 mu g/mL/min) increased the basal perfusion pressure of isolated arteriolar mesenteric bed (basal pressure: 74.17 +/- 3.42 vs TsV 151.8 +/- 17.82 mmHg*, *p < 0.05). TsV affects renal haemodynamics probably by a direct vasoconstrictor action leading to decreased renal flow. (c) 2005 Elsevier Ltd. All rights reserved.