936 resultados para remotely operated vehicles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Underwater video transect methods using small remotely operated vehicles (ROVs) and diveroperated video (DOV) are commonly used in benthic biodiversity assessments. Constraints posed by deeper waters have made surveys of the circalittoral zone ([30 m depth), a particularly challenging problem. Here we compare benthic diversity metrics and cluster analyses obtained with ROV and DOV between 45 and 65 m depth off southwest Iberia, across local (tens to hundreds of meters) and regional scales (tens of kilometers). Results showed no difference between methods in terms of the benthic species richness, taxonomic distinctness, and beta diversity, but only minor differences in the spatial structure depicted at the regional level. At the local scale, DOV performed better at discriminating patterns likely because of the divers visual acuity. We found that small ROV and DOV are reliable and comparable methods for the study of circalittoral benthic assemblages and can be used in a complimentary way to detect the greatest amount of variation in benthic ecosystems. Our study facilitates the understanding of capabilities and limitations of two underwater video methods and provides important insight into choice of the most appropriate technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the scientific and commercial utilization of Ocean resources, the role of intelligent underwater robotic systems are of great importance. Scientific activities like Marine Bio-technology, Hydrographic mapping, and commercial applications like Marine mining, Ocean energy, fishing, aquaculture, cable laying and pipe lining are a few utilization of ocean resources. As most of the deep undersea exploration are beyond the reachability of divers and also as the use of operator controlled and teleoperated Remotely Operated Vehicles (ROVs) and Diver Transport Vehicles (DTVs) turn out to be highly inefficient, it is essential to have a fully automated system capable providing stable control and communication links for the unstructured undersea environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the reactions of fishes to a manned submersible and a remotely operated vehicle (ROV) during surveys conducted in habitats of rock and mud at depths of 30–408 m off central California in 2007. We observed 26 taxa for 10,550 fishes observed from the submersible and for 16,158 fishes observed from the ROV. A reaction was defined as a distinct movement of a fish that, for a benthic or hovering individual, was greater than one body length away from its initial position or, for a swimming individual, was a change of course or speed. Of the observed fishes, 57% reacted to the ROV and 11% reacted to the submersible. Aggregating species and those species initially observed off the seafloor reacted most often to both vehicles. Fishes reacted more often to each vehicle when they were >1 m above the seafloor (22% of all fishes >1 m above the seafloor reacted to the submersible and 73% to the ROV) than when they were in contact with the seafloor (2% of all reactions to the submersible and 18% to the ROV). Fishes reacted by swimming away from both vehicles rather than toward them. Consideration of these reactions can inform survey designs and selection of survey tools and can, thereby, increase the reliability of fish assemblage metrics (e.g., abundance, density, and biomass) and assessments of fish and habitat associations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of hydrodynamic coefficients of full scale underwater vehicles using system identification (SI) is an extremely powerful technique. The procedure is based on experimental runs and on the analysis of on-board sensors and thrusters signals. The technique is cost effective and it has high repeatability; however, for open-frame underwater vehicles, it lacks accuracy due to the sensors' noise and the poor modeling of thruster-hull and thruster-thruster interaction effects. In this work, forced oscillation tests were undertaken with a full scale open-frame underwater vehicle. These conducted tests are unique in the sense that there are not many examples in the literature taking advantage of a PMM installation for testing a prototype and; consequently, allowing the comparison between the experimental results and the ones estimated by parameter identification. The Morison's equation inertia and drag coefficients were estimated with two parameter identification methods, that is, the weighted and the ordinary least-squares procedures. It was verified that the in-line force estimated from Morison's equation agrees well with the measured one except in the region around the motion inversion points. On the other hand, the error analysis showed that the ordinary least-squares provided better accuracy and, therefore, was used to evaluate the ratio between inertia and drag forces for a range of Keulegan-Carpenter and Reynolds numbers. It was concluded that, although both experimental and estimation techniques proved to be powerful tools for evaluation of an open-frame underwater vehicle's hydrodynamic coefficients, the research provided a rich amount of reference data for comparison with reduced models as well as for dynamic motion simulation of ROVs. [DOI: 10.1115/1.4004952]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remotely operated vehicle (ROV) surveys were conducted from NOAA’s state-of-the-art Fisheries Survey Vessel (FSV) Bell M. Shimada during a six-day transit November 1-5, 2010 between San Diego, CA and Seattle, WA. The objective of this survey was to locate and characterize deep-sea coral and sponge ecosystems at several recommended sites in support of NOAA’s Coral Reef Conservation Program. Deep-sea corals and sponges were photographed and collected whenever possible using the Southwest Fisheries Science Center’s (SWFSC) Phantom ROV ‘Sebastes’ (Fig. 1). The surveyed sites were recommended by National Marine Sanctuary (NMS) scientists at Monterey Bay NMS, Gulf of the Farallones NMS, and Olympic Coast NMS (Fig. 2). The specific sites were: Sur Canyon, The Football, Coquille Bank, and Olympic Coast NMS. During each dive, the ROV collected digital still images, video, navigation, and along-track conductivity-temperature-depth (CTD), and optode data. Video and high-resolution photographs were used to quantify abundance of corals, sponges, and associated fishes and invertebrates to the lowest practicable taxonomic level, and also to classify the seabed by substrate type. A reference laser system was used to quantify area searched and estimate the density of benthic fauna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ensuring the long term viability of reef environments requires essential monitoring of many aspects of these ecosystems. However, the sheer size of these unstructured environments (for example Australia’s Great Barrier Reef pose a number of challenges for current monitoring platforms which are typically remote operated and required significant resources and infrastructure. Therefore, a primary objective of the CSIRO robotic reef monitoring project is to develop and deploy a large number of AUV teams to perform broadscale reef surveying. In order to achieve this, the platforms must be cheap, even possibly disposable. This paper presents the results of a preliminary investigation into the performance of a low-cost sensor suite and associated processing techniques for vision and inertial-based navigation within a highly unstructured reef environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development of a novel vision-based autonomous surface vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an autonomous underwater vehicle, at the water's surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force based docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. Simulated and experimental results are presented demonstrating the autonomous vision- based docking strategy on a proof-of-concept vehicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a control design for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle (UUV). The control design is based on Port-Hamiltonian theory. The target dynamics (desired dynamic response) is shaped with particular attention to the target mass matrix so that the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of uncontrolled states. Throughout the design, insight of the physical phenomena involved is used to propose the desired target dynamics. The performance of the design is demonstrated through simulation with a high-fidelity model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power line inspection is a vital function for electricity supply companies but it involves labor-intensive and expensive procedures which are tedious and error-prone for humans to perform. A possible solution is to use an unmanned aerial vehicle (UAV) equipped with video surveillance equipment to perform the inspection. This paper considers how a small, electrically driven rotorcraft conceived for this application could be controlled by visually tracking the overhead supply lines. A dynamic model for a ducted-fan rotorcraft is presented and used to control the action of an Air Vehicle Simulator (AVS), consisting of a cable-array robot. Results show how visual data can be used to determine, and hence regulate in closed loop, the simulated vehicle’s position relative to the overhead lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Almost 120 days at sea aboard three NOAA research vessels and one fishing vessel over the past three years have supported biogeographic characterization of Tortugas Ecological Reserve (TER). This work initiated measurement of post-implementation effects of TER as a refuge for exploited species. In Tortugas South, seafloor transect surveys were conducted using divers, towed operated vehicles (TOV), remotely operated vehicles (ROV), various sonar platforms, and the Deepworker manned submersible. ARGOS drifter releases, satellite imagery, ichthyoplankton surveys, sea surface temperature, and diver census were combined to elucidate potential dispersal of fish spawning in this environment. Surveys are being compiled into a GIS to allow resource managers to gauge benthic resource status and distribution. Drifter studies have determined that within the ~ 30 days of larval life stage for fishes spawning at Tortugas South, larvae could reach as far downstream as Tampa Bay on the west Florida coast and Cape Canaveral on the east coast. Together with actual fish surveys and water mass delineation, this work demonstrates that the refuge status of this area endows it with tremendous downstream spillover and larval export potential for Florida reef habitats and promotes the maintenance of their fish communities. In Tortugas North, 30 randomly selected, permanent stations were established. Five stations were assigned to each of the following six areas: within Dry Tortugas National Park, falling north of the prevailing currents (Park North); within Dry Tortugas National Park, falling south of the prevailing currents (Park South); within the Ecological Reserve falling north of the prevailing currents (Reserve North); within the Ecological Reserve falling south of the prevailing currents (Reserve South); within areas immediately adjacent to these two strata, falling north of the prevailing currents (Out North); and within areas immediately adjacent to these two strata, falling south of the prevailing currents (Out South). Intensive characterization of these sites was conducted using multiple sonar techniques, TOV, ROV, diver-based digital video collection, diver-based fish census, towed fish capture, sediment particle-size, benthic chlorophyll analyses, and stable isotope analyses of primary producers, fish, and, shellfish. In order to complement and extend information from studies focused on the coral reef, we have targeted the ecotone between the reef and adjacent, non-reef habitats as these areas are well-known in ecology for indicating changes in trophic relationships at the ecosystem scale. Such trophic changes are hypothesized to occur as top-down control of the system grows with protection of piscivorous fishes. Preliminary isotope data, in conjunction with our prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be the source of a significant amount of the primary production ultimately fueling fish production throughout TER and downstream throughout the range of larval fish dispersal. Therefore, the status and influence of the previously neglected, non-reef habitat within the refuge (comprising ~70% of TER) appears to be intimately tied to the health of the coral reef community proper. These data, collected in a biogeographic context, employing an integrated Before-After Control Impact design at multiple spatial scales, leave us poised to document and quantify the postimplementation effects of TER. Combined with the work at Tortugas South, this project represents a multi-disciplinary effort of sometimes disparate disciplines (fishery oceanography, benthic ecology, food web analysis, remote sensing/geography/landscape ecology, and resource management) and approaches (physical, biological, ecological). We expect the continuation of this effort to yield critical information for the management of TER and the evaluation of protected areas as a refuge for exploited species. (PDF contains 32 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dosidicus gigas is a large pelagic cephalopod of the eastern Pacific that has recently undergone an unexpected, significant range expansion up the coast of North America. The impact that such a range expansion is expected to have on local fisheries and marine ecosystems has motivated a thorough study of this top predator, a squid whose lifestyle has been quite mysterious until recently. Unfortunately, Dosidicus spends daylight hours at depths prohibitive to making observations without significant artificial interference. Observations of this squid‟s natural behaviors have thus far been considerably limited by the bright illumination and loud noises of remotely-operated-vehicles, or else the presence of humans from boats or with SCUBA. However, recent technological innovations have allowed for observations to take place in the absence of humans, or significant human intrusion, through the use of animal-borne devices such as National Geographic‟s CRITTERCAM. Utilizing the advanced video recording and data logging technology of this device, this study seeks to characterize unknown components of Dosidicus gigas behavior at depth. Data from two successful CRITTERCAM deployments reveal an assortment of new observations concerning Dosidicus lifestyle. Tri-axial accelerometers enable a confident description of Dosidicus orientation during ascents, descents, and depth maintenance behavior - previously not possible with simple depth tags. Video documentation of intraspecific interactions between Dosidicus permits the identification of ten chromatic components, a previously undescribed basal chromatic behavior, and multiple distinct body postures. And finally, based on visualizations of spermatophore release by D. gigas and repetitive behavior patterns between squid pairs, this thesis proposes the existence of a new mating behavior in Dosidicus. This study intends to provide the first glimpse into the natural behavior of Dosidicus, establishing the groundwork for a comprehensive ethogram to be supported with data from future CRITTERCAM deployments. Cataloguing these behaviors will be useful in accounting for Dosidicus‟ current range expansion in the northeast Pacific, as well as to inform public interest in the impacts this expansion will have on local fisheries and marine ecosystems.