950 resultados para remote sensing (RS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growing concern over the status of global and regional bioenergy resources has necessitated the analysis and monitoring of land cover and land use parameters on spatial and temporal scales. The knowledge of land cover and land use is very important in understanding natural resources utilization, conversion and management. Land cover, land use intensity and land use diversity are land quality indicators for sustainable land management. Optimal management of resources aids in maintaining the ecosystem balance and thereby ensures the sustainable development of a region. Thus sustainable development of a region requires a synoptic ecosystem approach in the management of natural resources that relates to the dynamics of natural variability and the effects of human intervention on key indicators of biodiversity and productivity. Spatial and temporal tools such as remote sensing (RS), geographic information system (GIS) and global positioning system (GPS) provide spatial and attribute data at regular intervals with functionalities of a decision support system aid in visualisation, querying, analysis, etc., which would aid in sustainable management of natural resources. Remote sensing data and GIS technologies play an important role in spatially evaluating bioresource availability and demand. This paper explores various land cover and land use techniques that could be used for bioresources monitoring considering the spatial data of Kolar district, Karnataka state, India. Slope and distance based vegetation indices are computed for qualitative and quantitative assessment of land cover using remote spectral measurements. Differentscale mapping of land use pattern in Kolar district is done using supervised classification approaches. Slope based vegetation indices show area under vegetation range from 47.65 % to 49.05% while distance based vegetation indices shoes its range from 40.40% to 47.41%. Land use analyses using maximum likelihood classifier indicate that 46.69% is agricultural land, 42.33% is wasteland (barren land), 4.62% is built up, 3.07% of plantation, 2.77% natural forest and 0.53% water bodies. The comparative analysis of various classifiers, indicate that the Gaussian maximum likelihood classifier has least errors. The computation of talukwise bioresource status shows that Chikballapur Taluk has better availability of resources compared to other taluks in the district.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective conservation and management of natural resources requires up-to-date information of the land cover (LC) types and their dynamics. The LC dynamics are being captured using multi-resolution remote sensing (RS) data with appropriate classification strategies. RS data with important environmental layers (either remotely acquired or derived from ground measurements) would however be more effective in addressing LC dynamics and associated changes. These ancillary layers provide additional information for delineating LC classes' decision boundaries compared to the conventional classification techniques. This communication ascertains the possibility of improved classification accuracy of RS data with ancillary and derived geographical layers such as vegetation index, temperature, digital elevation model (DEM), aspect, slope and texture. This has been implemented in three terrains of varying topography. The study would help in the selection of appropriate ancillary data depending on the terrain for better classified information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration's (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) onboard the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study anti control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 The presence of a wide areal extent of small-sized village reservoirs offers a considerable potential for the development of culture-based fisheries (CBFs) in Sri Lanka. To this end, this study uses geographical information systems (GISs) and remote sensing (RS) techniques to determine the morphometric and biological characteristics most useful for classifying non-perennial reservoirs for CBF development and for assessing the influence of catchment land-use patterns on potential CBF yields. The reservoir shorelines at full water supply level were mapped with a Global Positioning System to determine shoreline length and reservoir areal extent. The ratio of shoreline length to reservoir extent, which was reported to be a powerful predictor variable of CBF yields, could be reliably quantified using RS techniques. The areal extent of reservoirs, quantified with RS techniques (RS extent), was used to estimate the ratio of forest cover plus scrubland cover to RS extent and was found to be significantly related to the CBF yield (R2 = 0.400; P < 0.05). The results of this study indicated that morphometric characteristics and catchment land-use patterns, which might be viewed as indices of biological productivity, can be quantified using RS and GIS techniques. © 2014 Wiley Publishing Asia Pty Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote sensing (RS) techniques have evolved into an important instrument to investigate forest function. New methods based on the remote detection of leaf biochemistry and photosynthesis are being developed and applied in pilot studies from airborne and satellite platforms (PRI, solar-induced fluorescence; N and chlorophyll content). Non-destructive monitoring methods, a direct application of RS studies, are also proving increasingly attractive for the determination of stress conditions or nutrient deficiencies not only in research but also in agronomy, horticulture and urban forestry (proximal RS). In this work I will focus on some novel techniques recently developed for the estimation of photochemistry and photosynthetic rates based (i) on the proximal measurement of steady-state chlorophyll fluorescence yield, or (ii) the remote sensing of changes in hyperspectral leaf reflectance, associated to xanthophyll de-epoxydation and energy partitioning, which is closely coupled to leaf photochemistry and photosynthesis. I will also present and describe a mathematical model of leaf steady-state fluorescence and photosynthesis recently developed in our group. Two different species were used in the experiments: Arbutus unedo, a schlerophyllous Mediterranean species, and Populus euroamericana, a broad leaf deciduous tree widely used in plantation forestry. Results show that ambient fluorescence could provide a useful tool for testing photosynthetic processes from a distance. These results confirm also the photosynthetic reflectance index (PRI) as an efficient remote sensing reflectance index estimating short-term changes in photochemical efficiency as well as long-term changes in leaf biochemistry. The study also demonstrated that RS techniques could provide a fast and reliable method to estimate photosynthetic pigment content and total nitrogen, beside assessing the state of photochemical process in our plants’ leaves in the field. This could have important practical applications for the management of plant cultivation systems, for the estimation of the nutrient requirements of our plants for optimal growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A post classification change detection technique based on a hybrid classification approach (unsupervised and supervised) was applied to Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Plus (ETM+), and ASTER images acquired in 1987, 2000 and 2004 respectively to map land use/cover changes in the Pic Macaya National Park in the southern region of Haiti. Each image was classified individually into six land use/cover classes: built-up, agriculture, herbaceous, open pine forest, mixed forest, and barren land using unsupervised ISODATA and maximum likelihood supervised classifiers with the aid of field collected ground truth data collected in the field. Ground truth information, collected in the field in December 2007, and including equalized stratified random points which were visual interpreted were used to assess the accuracy of the classification results. The overall accuracy of the land classification for each image was respectively: 1987 (82%), 2000 (82%), 2004 (87%). A post classification change detection technique was used to produce change images for 1987 to 2000, 1987 to 2004, and 2000 to 2004. It was found that significant changes in the land use/cover occurred over the 17- year period. The results showed increases in built up (from 10% to 17%) and herbaceous (from 5% to 14%) areas between 1987 and 2004. The increase of herbaceous was mostly caused by the abandonment of exhausted agriculture lands. At the same time, open pine forest and mixed forest areas lost (75%) and (83%) of their area to other land use/cover types. Open pine forest (from 20% to 14%) and mixed forest (from18 to 12%) were transformed into agriculture area or barren land. This study illustrated the continuing deforestation, land degradation and soil erosion in the region, which in turn is leading to decrease in vegetative cover. The study also showed the importance of Remote Sensing (RS) and Geographic Information System (GIS) technologies to estimate timely changes in the land use/cover, and to evaluate their causes in order to design an ecological based management plan for the park.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of remotely sensed data for environmental and ecological assessment has recently become more widespread in wetland research and management and advantages and limitations of this approach have been addresses (Ozesmi and Bauer 2002). Applications of remote sensing (RS) methods vary in spatial and temporal extent and resolution, in the types of data acquired, and in digital processing and pattern recognition algorithms used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This technical report describes a Light Detection and Ranging (LiDAR) augmented optimal path planning at low level flight methodology for remote sensing and sampling Unmanned Aerial Vehicles (UAV). The UAV is used to perform remote air sampling and data acquisition from a network of sensors on the ground. The data that contains information on the terrain is in the form of a 3D point clouds maps is processed by the algorithms to find an optimal path. The results show that the method and algorithm are able to use the LiDAR data to avoid obstacles when planning a path from a start to a target point. The report compares the performance of the method as the resolution of the LIDAR map is increased and when a Digital Elevation Model (DEM) is included. From a practical point of view, the optimal path plan is loaded and works seemingly with the UAV ground station and also shows the UAV ground station software augmented with more accurate LIDAR data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the RS and GIS methods, Siping city is selected as a study case with four remote sensing images in 25 years. Indices of urban morphology such as fractal dimension and compactness are employed to research the characteristics of urban expansion. Through digital processing and interpreting of the images, the process and characteristics of urban expansion are analysed using urban area change, fractal dimension and compactness. The results showed that there are three terms in this period. It expended fastest in the period of 1979~1991, and in the period of 1992~2001, the emphases on urban redevelopment made it expended slower. And this is in agreement with the Siping Statistical Yearbook. This indicates that the united of metrics of urban morphology and statistical data can be used to satisfactorily describe the process and characteristics of urban expansion. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following paper presents an evaluation of airborne sensors for use in vegetation management in powerline corridors. Three integral stages in the management process are addressed including, the detection of trees, relative positioning with respect to the nearest powerline and vegetation height estimation. Image data, including multi-spectral and high resolution, are analyzed along with LiDAR data captured from fixed wing aircraft. Ground truth data is then used to establish the accuracy and reliability of each sensor thus providing a quantitative comparison of sensor options. Tree detection was achieved through crown delineation using a Pulse-Coupled Neural Network (PCNN) and morphologic reconstruction applied to multi-spectral imagery. Through testing it was shown to achieve a detection rate of 96%, while the accuracy in segmenting groups of trees and single trees correctly was shown to be 75%. Relative positioning using LiDAR achieved a RMSE of 1.4m and 2.1m for cross track distance and along track position respectively, while Direct Georeferencing achieved RMSE of 3.1m in both instances. The estimation of pole and tree heights measured with LiDAR had a RMSE of 0.4m and 0.9m respectively, while Stereo Matching achieved 1.5m and 2.9m. Overall a small number of poles were missed with detection rates of 98% and 95% for LiDAR and Stereo Matching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.