974 resultados para relief in the bottom
Resumo:
Solving the water crisis in the developing world is a critical issue. Four billion people in the globe, so called the Base of the Pyramid (BoP) population suffer from inadequate access to safe drinking water, while millions die daily from waterborne diseases and lack of clean water. The BoP people desperately need to obtain a satisfactory access to safe water sources. In order to address the issue, this research has been carried out. To provide holistic consideration to the matter, comprehensive exploration of various causes of the water crisis and its impacts in developing countries were discussed. Then, various viable and relevant solutions to the problem have been thoroughly scrutinized, including scientific, rational, practical and speculative approaches, examination of existing methods, technologies and products at the BoP water market. The role of clean water to the sustainable development was specifically featured. The paper also has studied social and economic factors, actors and circumstances which affect the market development of clean water technologies in the BoP. Possibilities and potentials of successful business between foreign water enterprises and BoP consumers were considered, while primary obstacles are deliberated on, with suggestion of the ways to tackle them. Technologies and products which are needed by the poor must be affordable, sustainable and of an appropriate quality. The crucial question of technology transfer was soundly discussed with pointing out main hindrances on the way of its implementation between the developed and developing world. The means to overcome these barriers were properly observed as well. To explore to some extent the possibility and feasibility of technology transfer from Finland to the BoP sector, 3 case study analyses have been implemented. Personal discussions in form of interviews were conducted at Kemira, Outotec and Fenno Water, Finnish water treatment and supply enterprises. The results of the interviews shed light on the specific practical matters, actual obstacles and potential solutions of the technology transfer from Finland to low-income countries.
Resumo:
Hydrographic characteristics of the southwest coast of India and its adjoining Cochin backwaters (CBW) were studied during the summer monsoon period. Anomalous formation of anoxia and denitrification were observed in the bottom layers of CBW, which 5 have not been previously reported elsewhere in any tropical estuarine systems. The prevalent upwelling in the Arabian Sea (AS) brought cool, high saline, oxygen deficient and nutrient-rich waters towards the coastal zone and bottom layers of CBW during the high tide. High freshwater discharge in the surface layers brought high amount of nutrients and makes the CBW system highly productive. Intrusion of AS waters seems 10 to be stronger towards the upstream end ( 15 km), than had been previously reported, as a consequence of the lowering of river discharges and deepening of channels in the estuary. Time series measurements in the lower reaches of CBW indicated a low mixing zone with increased stratification, 3 h after the high tide (highest high tide) and high variation in vertical mixing during the spring and neap phases. The upwelled waters 15 (O2 40 μM) intruded into the estuary was found to lose more oxygen during the neap phase (suboxic O2 4 μM) than spring phase (hypoxic O2 10 μM). Increased stratification coupled with low ventilation and presence of high organic matter have resulted in an anoxic condition (O2 = 0), 2–6 km away from barmouth of the estuary and leads to the formation of hydrogen sulphide. The reduction of nitrate and formation of nitrite 20 within the oxygen deficient waters indicated strong denitrification intensity in the estuary. The expansion of oxygen deficient zone, denitrification and formation of hydrogen sulphide may lead to a destruction of biodiversity and an increase of green house gas emissions from this region
Dissolved oxygen content in the bottom water at HAUSGARTEN during the Polarstern expedition ARK-XX/1
Resumo:
Materials from different spheres of the Earth are ultimately delivered to bottom sediments, which serve as a natural recorder of the functioning of other spheres and originate as a result of the accumulation of their substances. Sedimentary material and species of river-transported elements are subjected to dramatic reworking in marginal filters, where river and sea waters are mixed. These processes are most important for the Caspian Sea, where runoffs of rivers (especially the Volga River) and the intense development and transportation of hydrocarbon fuel by tankers and pipelines (related to the coastal petroleum industry in the Sumgait and Baku ports, Apsheron Peninsula) are potential sources of hydrocarbon pollution. Previously obtained data showed that the total content of hydrocarbon fraction (i.e., the sum of aliphatic hydrocarbons (AHC) and polycyclic aromatic hydrocarbons (PAH)) in bottom sediments varied within 29-1820 µg/g. The content of petroleum hydrocarbons in the northeastern Caspian region varied from 0.052 to 34.09 µg/g with the maximum content in the Tengiz field. The content of six polyarenes in the Volga delta sediments was no more than 40 ng/g. To determine the recent HC pollution of bottom sediments and trends in the functioning of the Volga marginal filter, in summer of 2003 and 2004 we analyzed bottom sediments (58 samples) in the river waterway; Kirovsk channel; Bakhtemir and Ikryanoe branches; tributaries of the Kizan, Chagan, and other rivers; and the Caspian seashore.
Resumo:
The results of studying hydrocarbons during the flood in May 2005 are discussed. The concentration of aliphatic and polycyclic aromatic hydrocarbons are shown to match their concentrations in water areas with steady input of pollutants. Weathered oil and pyrogenic compounds dominated in their composition. The geochemical barrier the Northern Dvina River-Dvina Gulf is shown to become a filter during floods and prevents pollutants from penetrating into the White Sea.