964 resultados para relativistic mean field theory
Resumo:
We develop a method for performing one-loop calculations in finite systems that is based on using the WKB approximation for the high energy states. This approximation allows us to absorb all the counterterms analytically and thereby avoids the need for extreme numerical precision that was required by previous methods. In addition, the local approximation makes this method well suited for self-consistent calculations. We then discuss the application of relativistic mean field methods to the atomic nucleus. Self-consistent, one loop calculations in the Walecka model are performed and the role of the vacuum in this model is analyzed. This model predicts that vacuum polarization effects are responsible for up to five percent of the local nucleon density. Within this framework the possible role of strangeness degrees of freedom is studied. We find that strangeness polarization can increase the kaon-nucleus scattering cross section by ten percent. By introducing a cutoff into the model, the dependence of the model on short-distance physics, where its validity is doubtful, is calculated. The model is very sensitive to cutoffs around one GeV.
Resumo:
A density-dependent delta interaction (DDDI) is proposed in the formalism of BCS-type pairing correlations for exotic nuclei whose Fermi surfaces are close to the threshold of the unbound state. It provides the possibility to pick up those states whose wave functions are concentrated in the nuclear region by making the pairing matrix elements state dependent. On this basis, the energy level distributions, occupations, and ground-state properties are self-consistently studied in the RMF theory with deformation. Calculations are performed for the Sr isotopic chain. A good description of the total energy per nucleon, deformations, two-neutron separation energies and isotope shift from the proton drip line to the neutron drip line is found. Especially, by comparing the single-particle structure from the DDDI pairing interaction with that from the constant pairing interaction for a very neutron-rich nucleus it is demonstrated that the DDDI pairing method improves the treatment of the pairing in the continuum.
Resumo:
The ground state properties of the Pb isotopic are studied by using the axially deformed relativistic mean field (RMF) calculation with the parameter set TM1. The pairing correlation is treated by the BCS method and the isospin dependent pairing force is used. The 'blocking' method is used to deal with unpaired nucleons. The theoretical results show that the relativistic mean field theory with non-linear self-interactions of mesons provides a good description of the binding energy and neutron separation energy. The present paper focus on the physical mechanism of the Pb isotope shifts.
Resumo:
The axially deformed relativistic mean field theory with the force NLSH has been performed in the blocked BCS approximation to investigate the proper-ties and structure of N=Z nuclei from Z=20 to Z=48. Some ground state quantities such as binding energies, quadrupole deformations, one/two-nucleon separation energies, root-mean-squaxe (rms) radii of charge and neutron, and shell gaps have been calculated. The results suggest that large deformations can be found in medium-heavy nuclei with N=Z=38-42. The charge and neutron rms radii increase rapidly beyond the magic number N=Z=28 until Z=42 with increasing nucleon number, which is similar to isotope shift, yet beyond Z=42, they decrease dramatically as the structure changes greatly from Z=42 to Z=43. The evolution of shell gaps with proton number Z can be clearly observed. Besides the appearance of possible new shell closures, some conventional shell closures have been found to disappear in some region. In addition, we found that the Coulomb interaction is not strong enough to breakdown the shell structure of protons in the current region.
Resumo:
The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory and the fully quantal approach.
Resumo:
We use relativistic mean field theory, which includes scalar and vector mesons, to calculate the binding energy and charge radii in 125Cs - 139Cs. We then evaluate the nuclear structure corrections to the weak charges for a series of cesium isotopes using different parameters and estimate their uncertainty in the framework of this model.
Resumo:
The properties of the Z = 117 isotopic chain are studied within the framework of the axially deformed relativistic mean field theory (RMFT) in the blocked BCS approximation. The ground-state properties, such as binging energies, deformations as well as the possible.. decay energies and lifetimes are calculated with the parameter set of NL-Z2 and compared with results from the finite range droplet model. The analysis by RMFT shows that the isotopes in the range of mass number A = 291 similar to 300 exhibit higher stability, which suggests that they may be promising nuclei to be hopefully synthesized in the lab among the nuclei Z = 117.
Resumo:
We extend the relativistic mean field theory model of Sugahara and Toki by adding new couplings suggested by modern effective field theories. An improved set of parameters is developed with the goal to test the ability of the models based on effective field theory to describe the properties of finite nuclei and, at the same time, to be consistent with the trends of Dirac-Brueckner-Hartree-Fock calculations at densities away from the saturation region. We compare our calculations with other relativistic nuclear force parameters for various nuclear phenomena.
Resumo:
The possibility of kaon condensation in high-density symmetric nuclear matter is investigated including both s- and p-wave kaon-baryon interactions within the relativistic mean-field (RMF) theory. Above a certain density, we have a collective (D) over bar (S) state carrying the same quantum numbers as the antikaon. The appearance of the (K) over bar (S) state is caused by the time component of the axial-vector interaction between kaons and baryons. It is shown that the system becomes unstable with respect to condensation of K-(K) over bar (S) pairs. We consider how the effective baryon masses affect the kaon self-energy coming from the time component of the axial-vector interaction. Also, the role of the spatial component of the axial-vector interaction on the possible existence of the collective kaonic states is discussed in connection with A-mixing effects in the ground state of high-density matter: Implications of K (K) over bar (S) condensation for high-energy heavy-ion collisions are briefly mentioned. (c) 2005 Elsevier B.V. All rights reserved.