870 resultados para reinforced concrete beams
Resumo:
The effectiveness of a repair work for the restoration of spalled reinforced concrete (r.c.) structures depends to a great extent, on their ability to restore the structural integrity of the r.c. element, to restore its serviceability and to protect the reinforcements from further deterioration. This paper presents results of a study concocted to investigate the structural performance of eight spalled r.c. beams repaired using two advanced repair materials in various zones for comparison purposes, namely a free flowing self compacting mortar (FFSCM) and a polymer Modified cementitious mortar (PMCM). The repair technique adopted was that for the repair of spalled concrete in which the bond between the concrete and steel was completely lost due to reinforcement corrosion or the effect of fire or impact. The beams used for the experiment were first cast, then hacked at various zones before they were repaired except for the control beam. The beam specimens were then loaded to failure under four point loadings. The structural response of each beam was evaluated in terms of first crack load, cracking behavior, crack pattern, deflection, variation of strains in the concrete and steel, collapse load and the modes of failure. The results of the test showed that, the repair materials applied on the various zones of the beams were able to restore more than 100% of the beams’ capacity and that FFSCM gave a better overall performance.
Resumo:
A fatigue crack propagation model for concrete is proposed based on the concepts of fracture mechanics. This model takes into account the loading history, frequency of applied load, and size, effect parameters. Using this model, a method is described based on linear elastic fracture mechanics to assess the residual strength of cracked plain and reinforced concrete (RC) beams. This could be used to predict the residual strength (load carrying capacity) of cracked or damaged plain and reinforced concrete beams at a given level of damage. It has been seen that the fatigue crack propagation rate increases as. the size of plain concrete, beam increases indicating an increase in brittleness. In reinforced concrete (RC) beams, the fracture process becomes stable only when the beam is sufficiently reinforced.
Resumo:
In this paper, nonhomogeneous Markov chains are proposed for modeling the cracking behavior of reinforced concrete beams subjected to monotonically increasing loads. The model facilitates prediction of the maximum crackwidth at a given load given the crackwidth at a lower load level, and thus leads to a better understanding of the cracking phenomenon. To illustrate the methodology developed, the results of three reinforced concrete beams tested in the laboratory are analyzed and presented.
Resumo:
Probabilistic analysis of cracking moment from 22 simply supported reinforced concrete beams is performed. When the basic variables follow the distribution considered in this study, the cracking moment of a beam is found to follow a normal distribution. An expression is derived, for characteristic cracking moment, which will be useful in examining reinforced concrete beams for a limit state of cracking.
Resumo:
An experimental study aimed at understanding the deformational behavior of conventionally reinforced steel fiber concrete beams in pure bending is reported in this paper. One group of beams has steel fibers dispersed in the entire volume of the beam and the second has fibers dispersed over half the depth of the beam on the tension side. A comparative study of the deformational characteristics of these beams has been made. Half-depth fiber inclusion, requiring only half the quantity of fibers of full-depth inclusion, is found to be equally effective in improving the deformational behavior of beams. Thus, by such modes of inclusion of fibers, an economical and efficient use of expensive steel fibers can be realized.
Resumo:
This paper presents an experimental study on damage assessment of reinforced concrete (RC) beams subjected to incremental cyclic loading. During testing acoustic emissions (AEs) were recorded. The analysis of the AE released was carried out by using parameters relaxation ratio, load ratio and calm ratio. Digital image correlation (DIC) technique and tracking with available MATLAB program were used to measure the displacement and surface strains in concrete. Earlier researchers classified the damage in RC beams using Kaiser effect, crack mouth opening displacement and proposed a standard. In general (or in practical situations), multiple cracks occur in reinforced concrete beams. In the present study damage assessment in RC beams was studied according to different limit states specified by the code of practice IS-456:2000 and AE technique. Based on the two ratios namely load ratio and calm ratio and when the deflection reached approximately 85% of the maximum allowable deflection it was observed that the RC beams were heavily damaged. The combination of AE and DIC techniques has the potential to provide the state of damage in RC structures.
Resumo:
Mechanical behavior of reinforced concrete members is influenced by the action of unknown crack bridging reactions of rebars. Under cyclic loading, due to progressive growth of cracks, this bridging action contributes to the overall strength, stiffness and hysteretic behavior of the member. In this work, fatigue behavior of reinforced concrete beams are studied using a crack propagation law, developed using dimensional analysis for plain concrete with the effect of reinforcement being simulated through constraint exerted on the crack opening. The parameters considered in the model are fracture toughness, crack length, loading ratio and structural size. A numerical procedure is followed to compute fatigue life of RC beams and the dissipated energy in the steel reinforcement due to the shake down phenomenon under cyclic loading. Through a sensitivity study, it is concluded that the structural size is the most sensitive parameter in the fatigue crack propagation phenomenon. Furthermore, the residual moment carrying capacity of an RC member is determined as a function of crack extension by including the bond-slip mechanism.
Resumo:
Not available.