865 resultados para regressione elastic-net Fourier metilazione sindrome Down


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analizzeremo dati di metilazione di diversi gruppi di pazienti, mettendoli in relazione con le loro età, intesa in senso anagrafico e biologico. Adatteremo metodi di regressione che sono già stati usati in altri studi, in particolare di tipo statistico, cercando di migliorarli e proveremo ad applicare a questi dati anche dei metodi nuovi, non solo di tipo statistico. La nostra analisi vuole essere innovativa soprattutto perché, oltre a guardare i dati in maniera locale attraverso lo studio della metilazione di particolari sequenze genetiche più o meno note per essere collegate all’invecchiamento, andremo a considerare i dati anche in maniera globale, analizzando le proprietà della distribuzione di tutti i valori di metilazione di un paziente attraverso la trasformata di Fourier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE). Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-stage linear-in-the-parameter model construction algorithm is proposed aimed at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage which constructs a sparse linear-in-the-parameter classifier. The prefiltering stage is a two-level process aimed at maximizing a model's generalization capability, in which a new elastic-net model identification algorithm using singular value decomposition is employed at the lower level, and then, two regularization parameters are optimized using a particle-swarm-optimization algorithm at the upper level by minimizing the leave-one-out (LOO) misclassification rate. It is shown that the LOO misclassification rate based on the resultant prefiltered signal can be analytically computed without splitting the data set, and the associated computational cost is minimal due to orthogonality. The second stage of sparse classifier construction is based on orthogonal forward regression with the D-optimality algorithm. Extensive simulations of this approach for noisy data sets illustrate the competitiveness of this approach to classification of noisy data problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel two-stage construction algorithm for linear-in-the-parameters classifier is proposed, aiming at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage to construct a sparse linear-in-the-parameters classifier. For the first stage learning of generating the prefiltered signal, a two-level algorithm is introduced to maximise the model's generalisation capability, in which an elastic net model identification algorithm using singular value decomposition is employed at the lower level while the two regularisation parameters are selected by maximising the Bayesian evidence using a particle swarm optimization algorithm. Analysis is provided to demonstrate how “Occam's razor” is embodied in this approach. The second stage of sparse classifier construction is based on an orthogonal forward regression with the D-optimality algorithm. Extensive experimental results demonstrate that the proposed approach is effective and yields competitive results for noisy data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting failures in a distributed system based on previous events through logistic regression is a standard approach in literature. This technique is not reliable, though, in two situations: in the prediction of rare events, which do not appear in enough proportion for the algorithm to capture, and in environments where there are too many variables, as logistic regression tends to overfit on this situations; while manually selecting a subset of variables to create the model is error- prone. On this paper, we solve an industrial research case that presented this situation with a combination of elastic net logistic regression, a method that allows us to automatically select useful variables, a process of cross-validation on top of it and the application of a rare events prediction technique to reduce computation time. This process provides two layers of cross- validation that automatically obtain the optimal model complexity and the optimal mode l parameters values, while ensuring even rare events will be correctly predicted with a low amount of training instances. We tested this method against real industrial data, obtaining a total of 60 out of 80 possible models with a 90% average model accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unwanted spike noise in a digital signal is a common problem in digital filtering. However, sometimes the spikes are wanted and other, superimposed, signals are unwanted, and linear, time invariant (LTI) filtering is ineffective because the spikes are wideband - overlapping with independent noise in the frequency domain. So, no LTI filter can separate them, necessitating nonlinear filtering. However, there are applications in which the noise includes drift or smooth signals for which LTI filters are ideal. We describe a nonlinear filter formulated as the solution to an elastic net regularization problem, which attenuates band-limited signals and independent noise, while enhancing superimposed spikes. Making use of known analytic solutions a novel, approximate path-following algorithm is given that provides a good, filtered output with reduced computational effort by comparison to standard convex optimization methods. Accurate performance is shown on real, noisy electrophysiological recordings of neural spikes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field medic attends the injuries of a player during practice in the early 80s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyols are widely used as sugar substitutes and provide texture to foods. Guar gum has many applications in food industry such as increasing product viscosity and improving texture. Knowledge of rheological properties of gum/polyol systems is important to permit replacing sugar while maintaining product texture. In this work, rheological properties of 0.1, 0.5 and 1 g/100 g guar solutions containing 10 and 40 g/100 g of maltitol, sorbitol, or xylitol were studied. The behavior of these mixtures was evaluated by steady and oscillatory shear measurements, and after a freezing/thawing cycle. Apparent viscosity of guar solutions increased with addition of polyols and with the increase in their concentrations, except for 40 g/100 g sorbitol addition to 1 g/100 g guar gum, in which the apparent viscosity decreased. Addition of polyols also increased the dynamic moduli of the systems. In mixtures of guar with 40 g/100 g polyol, the phase angle (δ) was below unity, but was dependent on frequency, which is characteristic of concentrated solutions with a certain degree of structuring. FTIR spectroscopy was studied to provide information on possible interactions between guar gum and polyols. Analyses carried out after freezing/thawing showed no changes in the viscoelastic behavior of the solutions. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lateral-distortional buckling may occur in I-section beams with slender webs and stocky flanges. A computationally efficient method is presented in this paper to study this phenomenon. Previous studies on distortional buckling have been on the use of 3(rd) and 5(th) order polynomials to model the displacements. The present study provides an alternative way, using Fourier Series, to model the behaviour. Beams of different cross-sectional dimensions, load cases and restraint conditions are examined and compared. The accuracy and versatility of the method are verified by calibrating against the results of other published studies. The present method is believed to be a simple and efficient way of determining the buckling load and mode shapes of I-section beams that are susceptible to lateral-distortional buckling modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic net and related algorithms, such as generative topographic mapping, are key methods for discretized dimension-reduction problems. At their heart are priors that specify the expected topological and geometric properties of the maps. However, up to now, only a very small subset of possible priors has been considered. Here we study a much more general family originating from discrete, high-order derivative operators. We show theoretically that the form of the discrete approximation to the derivative used has a crucial influence on the resulting map. Using a new and more powerful iterative elastic net algorithm, we confirm these results empirically, and illustrate how different priors affect the form of simulated ocular dominance columns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cardiac magnetic resonance imaging provides detailed anatomical information on infarction. However, few studies have investigated the association of these data with mortality after acute myocardial infarction. Objective: To study the association between data regarding infarct size and anatomy, as obtained from cardiac magnetic resonance imaging after acute myocardial infarction, and long-term mortality. Methods: A total of 1959 reports of “infarct size” were identified in 7119 cardiac magnetic resonance imaging studies, of which 420 had clinical and laboratory confirmation of previous myocardial infarction. The variables studied were the classic risk factors – left ventricular ejection fraction, categorized ventricular function, and location of acute myocardial infarction. Infarct size and acute myocardial infarction extent and transmurality were analyzed alone and together, using the variable named “MET-AMI”. The statistical analysis was carried out using the elastic net regularization, with the Cox model and survival trees. Results: The mean age was 62.3 ± 12 years, and 77.3% were males. During the mean follow-up of 6.4 ± 2.9 years, there were 76 deaths (18.1%). Serum creatinine, diabetes mellitus and previous myocardial infarction were independently associated with mortality. Age was the main explanatory factor. The cardiac magnetic resonance imaging variables independently associated with mortality were transmurality of acute myocardial infarction (p = 0.047), ventricular dysfunction (p = 0.0005) and infarcted size (p = 0.0005); the latter was the main explanatory variable for ischemic heart disease death. The MET-AMI variable was the most strongly associated with risk of ischemic heart disease death (HR: 16.04; 95%CI: 2.64-97.5; p = 0.003). Conclusion: The anatomical data of infarction, obtained from cardiac magnetic resonance imaging after acute myocardial infarction, were independently associated with long-term mortality, especially for ischemic heart disease death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of microarray technology often leads to high-dimensional and low- sample size data settings. Over the past several years, a variety of novel approaches have been proposed for variable selection in this context. However, only a small number of these have been adapted for time-to-event data where censoring is present. Among standard variable selection methods shown both to have good predictive accuracy and to be computationally efficient is the elastic net penalization approach. In this paper, adaptation of the elastic net approach is presented for variable selection both under the Cox proportional hazards model and under an accelerated failure time (AFT) model. Assessment of the two methods is conducted through simulation studies and through analysis of microarray data obtained from a set of patients with diffuse large B-cell lymphoma where time to survival is of interest. The approaches are shown to match or exceed the predictive performance of a Cox-based and an AFT-based variable selection method. The methods are moreover shown to be much more computationally efficient than their respective Cox- and AFT- based counterparts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Beitrag wird ein neuartiges Förderprinzip zur federnden Aufnahme und zum Transport von massenhaft anfallenden Paketstrukturen vorgestellt. Das Förderprinzip beruht auf einem flächigen Tragmittel in Form eines veränderbaren, elastischen Verbundes von kleinskaligen Fördermodulen. Das konzipierte Transportprinzip mit peristaltischen Eigenschaften soll entstehende Staus der Pakete schnell auflösen und eine dedizierte Steuerung von Teilmengen zulassen, um den erforderlichen Durchsatz innerhalb eines Materialflusssystems zu erreichen. Diese Lösung ermöglicht eine sinnvolle Verknüpfung von Wirkprinzipien der Schüttgut- und Stückgutförderung zur Aufnahme und Fortbewegung von Pakete als Schüttgut. Die Grundfunktionalität des Förderkonzepts wird durch die numerische Simulation auf Basis der Diskrete Elemente Methode sowie der Mehrkörpersimulation überprüft.