918 resultados para reduced order models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Routh-stability method is employed to reduce the order of discrete-time system transfer functions. It is shown that the Routh approximant is well suited to reduce both the denominator and the numerator polynomials, although alternative methods, such as PadÃ�Â(c)-Markov approximation, are also used to fit the model numerator coefficients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method is presented to generate reduced order models (ROMs) in Fluid Dynamics problems of industrial interest. The method is based on the expansion of the flow variables in a Proper Orthogonal Decomposition (POD) basis, calculated from a limited number of snapshots, which are obtained via Computational Fluid Dynamics (CFD). Then, the POD-mode amplitudes are calculated as minimizers of a properly defined overall residual of the equations and boundary conditions. The method includes various ingredients that are new in this field. The residual can be calculated using only a limited number of points in the flow field, which can be scattered either all over the whole computational domain or over a smaller projection window. The resulting ROM is both computationally efficient(reconstructed flow fields require, in cases that do not present shock waves, less than 1 % of the time needed to compute a full CFD solution) and flexible(the projection window can avoid regions of large localized CFD errors).Also, for problems related with aerodynamics, POD modes are obtained from a set of snapshots calculated by a CFD method based on the compressible Navier Stokes equations and a turbulence model (which further more includes some unphysical stabilizing terms that are included for purely numerical reasons), but projection onto the POD manifold is made using the inviscid Euler equations, which makes the method independent of the CFD scheme. In addition, shock waves are treated specifically in the POD description, to avoid the need of using a too large number of snapshots. Various definitions of the residual are also discussed, along with the number and distribution of snapshots, the number of retained modes, and the effect of CFD errors. The method is checked and discussed on several test problems that describe (i) heat transfer in the recirculation region downstream of a backwards facing step, (ii) the flow past a two-dimensional airfoil in both the subsonic and transonic regimes, and (iii) the flow past a three-dimensional horizontal tail plane. The method is both efficient and numerically robust in the sense that the computational effort is quite small compared to CFD and results are both reasonably accurate and largely insensitive to the definition of the residual, to CFD errors, and to the CFD method itself, which may contain artificial stabilizing terms. Thus, the method is amenable for practical engineering applications. Resumen Se presenta un nuevo método para generar modelos de orden reducido (ROMs) aplicado a problemas fluidodinámicos de interés industrial. El nuevo método se basa en la expansión de las variables fluidas en una base POD, calculada a partir de un cierto número de snapshots, los cuales se han obtenido gracias a simulaciones numéricas (CFD). A continuación, las amplitudes de los modos POD se calculan minimizando un residual global adecuadamente definido que combina las ecuaciones y las condiciones de contorno. El método incluye varios ingredientes que son nuevos en este campo de estudio. El residual puede calcularse utilizando únicamente un número limitado de puntos del campo fluido. Estos puntos puede encontrarse dispersos a lo largo del dominio computacional completo o sobre una ventana de proyección. El modelo ROM obtenido es tanto computacionalmente eficiente (en aquellos casos que no presentan ondas de choque reconstruir los campos fluidos requiere menos del 1% del tiempo necesario para calcular una solución CFD) como flexible (la ventana de proyección puede escogerse de forma que evite contener regiones con errores en la solución CFD localizados y grandes). Además, en problemas aerodinámicos, los modos POD se obtienen de un conjunto de snapshots calculados utilizando un código CFD basado en la versión compresible de las ecuaciones de Navier Stokes y un modelo de turbulencia (el cual puede incluir algunos términos estabilizadores sin sentido físico que se añaden por razones puramente numéricas), aunque la proyección en la variedad POD se hace utilizando las ecuaciones de Euler, lo que hace al método independiente del esquema utilizado en el código CFD. Además, las ondas de choque se tratan específicamente en la descripción POD para evitar la necesidad de utilizar un número demasiado grande de snapshots. Varias definiciones del residual se discuten, así como el número y distribución de los snapshots,el número de modos retenidos y el efecto de los errores debidos al CFD. El método se comprueba y discute para varios problemas de evaluación que describen (i) la transferencia de calor en la región de recirculación aguas abajo de un escalón, (ii) el flujo alrededor de un perfil bidimensional en regímenes subsónico y transónico y (iii) el flujo alrededor de un estabilizador horizontal tridimensional. El método es tanto eficiente como numéricamente robusto en el sentido de que el esfuerzo computacional es muy pequeño comparado con el requerido por el CFD y los resultados son razonablemente precisos y muy insensibles a la definición del residual, los errores debidos al CFD y al método CFD en sí mismo, el cual puede contener términos estabilizadores artificiales. Por lo tanto, el método puede utilizarse en aplicaciones prácticas de ingeniería.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new reconstruction method for diffuse optical tomography using reduced-order models of light transport in tissue. The models, which directly map optical tissue parameters to optical flux measurements at the detector locations, are derived based on data generated by numerical simulation of a reference model. The reconstruction algorithm based on the reduced-order models is a few orders of magnitude faster than the one based on a finite element approximation on a fine mesh incorporating a priori anatomical information acquired by magnetic resonance imaging. We demonstrate the accuracy and speed of the approach using a phantom experiment and through numerical simulation of brain activation in a rat's head. The applicability of the approach for real-time monitoring of brain hemodynamics is demonstrated through a hypercapnic experiment. We show that our results agree with the expected physiological changes and with results of a similar experimental study. However, by using our approach, a three-dimensional tomographic reconstruction can be performed in ∼3  s per time point instead of the 1 to 2 h it takes when using the conventional finite element modeling approach

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with two important research aspects concerning radio frequency (RF) microresonators and switches. First, a new approach for compact modeling and simulation of these devices is presented. Then, a combined process flow for their simultaneous fabrication on a SOI substrate is proposed. Compact models for microresonators and switches are extracted by applying mathematical model order reduction (MOR) to the devices finite element (FE) description in ANSYS c° . The behaviour of these devices includes forms of nonlinearities. However, an approximation in the creation of the FE model is introduced, which enables the use of linear model order reduction. Microresonators are modeled with the introduction of transducer elements, which allow for direct coupling of the electrical and mechanical domain. The coupled system element matrices are linearized around an operating point and reduced. The resulting macromodel is valid for small signal analysis around the bias point, such as harmonic pre-stressed analysis. This is extremely useful for characterizing the frequency response of resonators. Compact modelling of switches preserves the nonlinearity of the device behaviour. Nonlinear reduced order models are obtained by reducing the number of nonlinearities in the system and handling them as input to the system. In this way, the system can be reduced using linear MOR techniques and nonlinearities are introduced directly in the reduced order model. The reduction of the number of system nonlinearities implies the approximation of all distributed forces in the model with lumped forces. Both for microresonators and switches, a procedure for matrices extraction has been developed so that reduced order models include the effects of electrical and mechanical pre-stress. The extraction process is fast and can be done automatically from ANSYS binary files. The method has been applied for the simulation of several devices both at devices and circuit level. Simulation results have been compared with full model simulations, and, when available, experimental data. Reduced order models have proven to conserve the accuracy of finite element method and to give a good description of the overall device behaviour, despite the introduced approximations. In addition, simulation is very fast, both at device and circuit level. A combined process-flow for the integrated fabrication of microresonators and switches has been defined. For this purpose, two processes that are optimized for the independent fabrication of these devices are merged. The major advantage of this process is the possibility to create on-chip circuit blocks that include both microresonators and switches. An application is, for example, aswitched filter bank for wireless transceiver. The process for microresonators fabrication is characterized by the use of silicon on insulator (SOI) wafers and on a deep reactive ion etching (DRIE) step for the creation of the vibrating structures in single-crystal silicon and the use of a sacrificial oxide layer for the definition of resonator to electrode distance. The fabrication of switches is characterized by the use of two different conductive layers for the definition of the actuation electrodes and by the use of a photoresist as a sacrificial layer for the creation of the suspended structure. Both processes have a gold electroplating step, for the creation of the resonators electrodes, transmission lines and suspended structures. The combined process flow is designed such that it conserves the basic properties of the original processes. Neither the performance of the resonators nor the performance of the switches results affected by the simultaneous fabrication. Moreover, common fabrication steps are shared, which allows for cheaper and faster fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some basic ideas are presented for the construction of robust, computationally efficient reduced order models amenable to be used in industrial environments, combined with somewhat rough computational fluid dynamics solvers. These ideas result from a critical review of the basic principles of proper orthogonal decomposition-based reduced order modeling of both steady and unsteady fluid flows. In particular, the extent to which some artifacts of the computational fluid dynamics solvers can be ignored is addressed, which opens up the possibility of obtaining quite flexible reduced order models. The methods are illustrated with the steady aerodynamic flow around a horizontal tail plane of a commercial aircraft in transonic conditions, and the unsteady lid-driven cavity problem. In both cases, the approximations are fairly good, thus reducing the computational cost by a significant factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is presented to construct computationally efficient reduced-order models (ROMs) of three-dimensional aerodynamic flows around commercial aircraft components. The method is based on the proper orthogonal decomposition (POD) of a set of steady snapshots, which are calculated using an industrial solver based on some Reynolds averaged Navier-Stokes (RANS) equations. The POD-mode amplitudes are calculated by minimizing a residual defined from the Euler equations, even though the snapshots themselves are calculated from viscous equations. This makes the ROM independent of the peculiarities of the solver used to calculate the snapshots. Also, both the POD modes and the residual are calculated using points in the computational mesh that are concentrated in a close vicinity of the aircraft, which constitute a much smaller number than the total number of mesh points. Despite these simplifications, the method provides quite good approximations of the flow variables distributions in the whole computational domain, including the boundary layer attached to the aircraft surface and the wake. Thus, the method is both robust and computationally efficient, which is checked considering the aerodynamic flow around a horizontal tail plane, in the transonic range 0.4?Mach number?0.8, ?3°?angle of attack?3°.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we propose a method to accelerate time dependent numerical solvers of systems of PDEs that require a high cost in computational time and memory. The method is based on the combined use of such numerical solver with a proper orthogonal decomposition, from which we identify modes, a Galerkin projection (that provides a reduced system of equations) and the integration of the reduced system, studying the evolution of the modal amplitudes. We integrate the reduced model until our a priori error estimator indicates that our approximation in not accurate. At this point we use again our original numerical code in a short time interval to adapt the POD manifold and continue then with the integration of the reduced model. Application will be made to two model problems: the Ginzburg-Landau equation in transient chaos conditions and the two-dimensional pulsating cavity problem, which describes the motion of liquid in a box whose upper wall is moving back and forth in a quasi-periodic fashion. Finally, we will discuss a way of improving the performance of the method using experimental data or information from numerical simulations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of high-voltage equipment encompasses the study of oscillatory surges caused by transients such as those produced by switching. By obtaining a model, the response of which reconstructs that observed in the actual system, simulation studies and critical tests can be carried out on the model rather than on the equipment itself. In this paper, methods for the construction of simplified models are described and it is shown how the use of a complex model does not necessarily result in superior response pattern reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we explore the possibility of deriving low-dimensional models of the dynamics of the Martian atmosphere. The analysis consists of a Proper Orthogonal Decomposition (POD) of the atmospheric streamfunction after first decomposing the vertical structure with a set of eigenmodes. The vertical modes were obtained from the quasi-geostrophic vertical structure equation. The empirical orthogonal functions (EOFs) were optimized to represent the atmospheric total energy. The total energy was used as the criterion to retain those modes with large energy content and discard the rest. The principal components (PCs) were analysed by means of Fourier analysis, so that the dominant frequencies could be identified. It was possible to observe the strong influence of the diurnal cycle and to identify the motion and vacillation of baroclinic waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaves are mainly responsible for food production in vascular plants. Studying individual leaves can reveal important characteristics of the whole plant, namely its health condition, nutrient status, the presence of viruses and rooting ability. One technique that has been used for this purpose is Electrical Impedance Spectroscopy, which consists of determining the electrical impedance spectrum of the leaf. In this paper we use EIS and apply the tools of Fractional Calculus to model and characterize six species. Two modeling approaches are proposed: firstly, Resistance, Inductance, Capacitance electrical networks are used to approximate the leaves’ impedance spectra; afterwards, fractional-order transfer functions are considered. In both cases the model parameters can be correlated with physical characteristics of the leaves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functionally graded composite materials can provide continuously varying properties, which distribution can vary according to a specific location within the composite. More frequently, functionally graded materials consider a through thickness variation law, which can be more or less smoother, possessing however an important characteristic which is the continuous properties variation profiles, which eliminate the abrupt stresses discontinuities found on laminated composites. This study aims to analyze the transient dynamic behavior of sandwich structures, having a metallic core and functionally graded outer layers. To this purpose, the properties of the particulate composite metal-ceramic outer layers, are estimated using Mod-Tanaka scheme and the dynamic analyses considers first order and higher order shear deformation theories implemented though kriging finite element method. The transient dynamic response of these structures is carried out through Bossak-Newmark method. The illustrative cases presented in this work, consider the influence of the shape functions interpolation domain, the properties through-thickness distribution, the influence of considering different materials, aspect ratios and boundary conditions. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An error polynomial is defined, the coefficients of which indicate the difference at any instant between a system and a model of lower order approximating the system. It is shown how Markov parameters and time series proportionals of the model can be matched with those of the system by setting error polynomial coefficients to zero. Also discussed is the way in which the error between system and model can be considered as being a filtered form of an error input function specified by means of model parameter selection.