1000 resultados para reduced biodiversity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hunting spider communities of the Dionycha clade were studied 1986 through 1988 in fragmented woodlands and secondary agricultural habitats of the Botucatu area in São Paulo state, Brazil. The original vegetation of mainly tropical Atlantic rain forest (Mata Atlantica) was cleared already 70 years ago. In a total sample of over 1000 adult spiders, 247 species belonging to 12 families Mere determined. A decreasing frequency and diversity of spiders rc as found if forest remnants were compared with sugar cane fields and cattle pasture. The specific composition of the spider fauna as surveyed in different habitats is discussed under ecological aspects and in relation to the history of land use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pricing greenhouse gas emissions is a burgeoning and possibly lucrative financial means for climate change mitigation. Emissions pricing is being used to fund emissions-abatement technologies and to modify land management to improve carbon sequestration and retention. Here we discuss the principal land-management options under existing and realistic future emissions-price legislation in Australia, and examine them with respect to their anticipated direct and indirect effects on biodiversity. The main ways in which emissions price-driven changes to land management can affect biodiversity are through policies and practices for (1) environmental plantings for carbon sequestration, (2) native regrowth, (3) fire management, (4) forestry, (5) agricultural practices (including cropping and grazing), and (6) feral animal control. While most land-management options available to reduce net greenhouse gas emissions offer clear advantages to increase the viability of native biodiversity, we describe several caveats regarding potentially negative outcomes, and outline components that need to be considered if biodiversity is also to benefit from the new carbon economy. Carbon plantings will only have real biodiversity value if they comprise appropriate native tree species and provide suitable habitats and resources for valued fauna. Such plantings also risk severely altering local hydrology and reducing water availability. Management of regrowth post-agricultural abandonment requires setting appropriate baselines and allowing for thinning in certain circumstances, and improvements to forestry rotation lengths would likely increase carbon-retention capacity and biodiversity value. Prescribed burning to reduce the frequency of high-intensity wildfires in northern Australia is being used as a tool to increase carbon retention. Fire management in southern Australia is not readily amenable for maximising carbon storage potential, but will become increasingly important for biodiversity conservation as the climate warms. Carbon price-based modifications to agriculture that would benefit biodiversity include reductions in tillage frequency and livestock densities, reductions in fertiliser use, and retention and regeneration of native shrubs; however, anticipated shifts to exotic perennial grass species such as buffel grass and kikuyu could have net negative implications for native biodiversity. Finally, it is unlikely that major reductions in greenhouse gas emissions arising from feral animal control are possible, even though reduced densities of feral herbivores will benefit Australian biodiversity greatly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The Queensland East Coast Otter Trawl Fishery (ECOTF) for penaeid shrimp fishes within Australia's Great Barrier Reef World Heritage Area (GBRWHA). The past decade has seen the implementation of conservation and fisheries management strategies to reduce the impact of the ECOTF on the seabed and improve biodiversity conservation. New information from electronic vessel location monitoring systems (VMS) provides an opportunity to review the interactions between the ECOTF and spatial closures for biodiversity conservation. Methodology and Results: We used fishing metrics and spatial information on the distribution of closures and modelled VMS data in a geographical information system (GIS) to assess change in effort of the trawl fishery from 2001-2009 and to quantify the exposure of 70 reef, non-reef and deep water bioregions to trawl fishing. The number of trawlers and the number of days fished almost halved between 2001 and 2009 and new spatial closures introduced in 2004 reduced the area zoned available for trawl fishing by 33%. However, we found that there was only a relatively minor change in the spatial footprint of the fishery as a result of new spatial closures. Non-reef bioregions benefited the most from new spatial closures followed by deep and reef bioregions. Conclusions/Significance: Although the catch of non target species remains an issue of concern for fisheries management, the small spatial footprint of the ECOTF relative to the size of the GBRWHA means that the impact on benthic habitats is likely to be negligible. The decline in effort as a result of fishing industry structural adjustment, increasing variable costs and business decisions of fishers is likely to continue a trend to fish only in the most productive areas. This will provide protection for most benthic habitats without any further legislative or management intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the Qinghai-Tibet plateau increased livestock numbers have resulted in degradation of the grasslands with potential impacts on native biodiversity. Concurrently, perceived increases in populations of native small mammals such as plateau pikas (Ochotona curzoniae) have led to poisoning programs, with uncertain impacts on species such as ground-nesting birds. We explored the relationships between the local seasonal abundance of small birds and (1) the density of pika burrows; (2) livestock grazing practices; and (3) local poisoning of pikas. Around Naqu prefecture, central Tibet, we used a nested experimental design to collect data from areas rested from grazing over summer, nearby areas with year-round grazing and areas subjected to pika poisoning. Additional data were collected from a site where grazing had not occurred for at least 4 years prior to the study. Poisoning pikas in spring had no detectable effect on the local abundance of birds the following autumn. However, two ground-nesting species, white-rumped and rufous-necked snowfinches, showed positive associations with the density of pika burrows, indicating that long-term 'pika poisoning could reduce the density of these species by reducing the density of pika burrows. Rufous-necked snowfinches and non ground-nesting species including horned larks and common hoopoes showed positive responses to reduced grazing pressure from livestock, particularly in the long-rested site, indicating current grazing levels could be having a negative impact on these species. Conservation of small passerine biodiversity in this system will require changed management practices for livestock and pikas that consider the complex three-way interaction between livestock grazing, pikas and small birds. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mesocosm experiment was conducted to quantify the effects of reduced pH and elevated temperature on an intact marine invertebrate community. Standardised faunal communities, collected from the extreme low intertidal zone using artificial substrate units, were exposed to one of eight nominal treatments (four pH levels: 8.0, 7.7, 7.3 and 6.7, crossed with two temperature levels: 12 and 16°C). After 60 days exposure communities showed significant changes in structure and lower diversity in response to reduced pH. The response to temperature was more complex. At higher pH levels (8.0 and 7.7) elevated temperature treatments contained higher species abundances and diversity than the lower temperature treatments. In contrast, at lower pH levels (7.3 and 6.7), elevated temperature treatments had lower species abundances and diversity than lower temperature treatments. The species losses responsible for these changes in community structure and diversity were not randomly distributed across the different phyla examined. Molluscs showed the greatest reduction in abundance and diversity in response to low pH and elevated temperature, whilst annelid abundance and diversity was mostly unaffected by low pH and was higher at the elevated temperature. The arthropod response was between these two extremes with moderately reduced abundance and diversity at low pH and elevated temperature. Nematode abundance increased in response to low pH and elevated temperature, probably due to the reduction of ecological constraints, such as predation and competition, caused by a decrease in macrofaunal abundance. This community-based mesocosm study supports previous suggestions, based on observations of direct physiological impacts, that ocean acidification induced changes in marine biodiversity will be driven by differential vulnerability within and between different taxonomical groups. This study also illustrates the importance of considering indirect effects that occur within multispecies assemblages when attempting to predict the consequences of ocean acidification and global warming on marine communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given currently high rates of extinction, it is critical to be able to predict how ecosystems will respond to loss of species and consequent changes in community structure. Much previous research in this area has been based on terrestrial systems, using synthetically assembled communities. There has beer! much less research on inter-trophic effects in different systems, using in situ removal experiments. Problems with the design of early experiments have made it difficult to determine whether reductions in ecosystem functioning in low diversity treatments were due to the number of species present or merely to the reduced likelihood of including particular (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les métaux lourds (ML) s’accumulent de plus en plus dans les sols à l’échelle mondiale, d’une part à cause des engrais minéraux et divers produits chimiques utilisés en agriculture intensive, et d’autre part à cause des activités industrielles. Toutes ces activités génèrent des déchets toxiques qui s’accumulent dans l’environnement. Les ML ne sont pas biodégradables et leur accumulation cause donc des problèmes de toxicité des sols et affecte la biodiversité des microorganismes qui y vivent. La fertilisation en azote (N) est une pratique courante en agriculture à grande échelle qui permet d’augmenter la fertilité des sols et la productivité des cultures. Cependant, son utilisation à long terme cause plusieurs effets néfastes pour l'environnement. Par exemple, elle augmente la quantité des ML dans les sols, les nappes phréatiques et les plantes. En outre, ces effets néfastes réduisent et changent considérablement la biodiversité des écosystèmes terrestres. La structure des communautés des champignons mycorhiziens à arbuscules (CMA) a été étudiée dans des sols contaminés par des ML issus de la fertilisation à long terme en N. Le rôle des différentes espèces de CMA dans l'absorption et la séquestration des ML a été aussi investigué. Dans une première expérience, la structure des communautés de CMA a été analysée à partir d’échantillons de sols de sites contaminés par des ML et de sites témoins non-contaminés. Nous avons constaté que la diversité des CMA indigènes a été plus faible dans les sols et les racines des plantes récoltées à partir de sites contaminés par rapport aux sites noncontaminés. Nous avons également constaté que la structure de la communauté d'AMF a été modifiée par la présence des ML dans les sols. Certains ribotypes des CMA ont été plus souvent associés aux sites contaminés, alors que d’autres ribotypes ont été associés aux sites non-contaminés. Cependant, certains ribotypes ont été observés aussi bien dans les sols pollués que non-pollués. Dans une deuxième expérience, les effets de la fertilisation organique et minérale (N) sur les différentes structures des communautés des CMA ont été étudiés. La variation de la structure de la communauté de CMA colonisant les racines a été analysée en fonction du type de fertilisation. Certains ribotypes de CMA étaient associés à la fertilisation organique et d'autres à la fertilisation minérale. En revanche, la fertilisation minérale a réduit le nombre de ribotypes de CMA alors que la fertilisation organique l’a augmenté. Dans cette expérience, j’ai démontré que le changement de structure des communautés de CMA colonisant des racines a eu un effet significatif sur la productivité des plantes. Dans une troisième expérience, le rôle de deux espèces de CMA (Glomus irregulare et G. mosseae) dans l'absorption du cadmium (Cd) par des plants de tournesol cultivés dans des sols amendés avec trois niveaux différents de Cd a été évalué. J’ai démontré que les deux espèces de CMA affectent différemment l’absorption ou la séquestration de ce ML par les plants de tournesol. Cette expérience a permis de mieux comprendre le rôle potentiel des CMA dans l'absorption des ML selon la concentration de cadmium dans le sol et les espèces de CMA. Mes recherches de doctorat démontrent donc que la fertilisation en N affecte la structure des communautés des CMA dans les racines et le sol. Le changement de structure de la communauté de CMA colonisant les racines affecte de manière significative la productivité des plantes. J’ai aussi démontré que, sous nos conditions expériemntales, l’espèce de CMA G. irregulare a été observée dans tous les sites (pollués et non-pollués), tandis que le G. mosseae n’a été observé en abondance que dans les sites contaminés. Par conséquent, j’ai étudié le rôle de ces deux espèces (G. irregulare et G. mosseae) dans l'absorption du Cd par le tournesol cultivé dans des sols amendés avec trois différents niveaux de Cd en serre. Les résultats indiquent que les espèces de CMA ont un potentiel différent pour atténuer la toxicité des ML dans les plantes hôtes, selon le niveau de concentration en Cd. En conclusion, mes travaux suggèrent que le G. irregulare est une espèce potentiellement importante pour la phytoextration du Cd, alors que le G. mosseae pourrait être une espèce appropriée pour phytostabilisation du Cd et du Zn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The establishment of grassy strips at the margins of arable fields is an agri-environment scheme that aims to provide resources for native flora and fauna and thus increase farmland biodiversity. These margins can be managed to target certain groups, such as farmland birds and pollinators, but the impact of such management on the soil fauna has been poorly studied. This study assessed the effect of seed mix and management on the biodiversity, conservation and functional value of field margins for soil macrofauna. 2. Experimental margin plots were established in 2001 in a winter wheat field in Cambridgeshire, UK, using a factorial design of three seed mixes and three management practices [spring cut, herbicide application and soil disturbance (scarification)]. In spring and autumn 2005, soil cores taken from the margin plots and the crop were hand-sorted for soil macrofauna. The Lumbricidae, Isopoda, Chilopoda, Diplopoda, Carabidae and Staphylinidae were identified to species and classified according to feeding type. 3. Diversity in the field margins was generally higher than in the crop, with the Lumbricidae, Isopoda and Coleoptera having significantly more species and/or higher abundances in the margins. Within the margins, management had a significant effect on the soil macrofauna, with scarified plots containing lower abundances and fewer species of Isopods. The species composition of the scarified plots was similar to that of the crop. 4. Scarification also reduced soil- and litter-feeder abundances and predator species densities, although populations appeared to recover by the autumn, probably as a result of dispersal from neighbouring plots and boundary features. The implications of the responses of these feeding groups for ecosystem services are discussed. 5. Synthesis and applications. This study shows that the management of agri-environment schemes can significantly influence their value for soil macrofauna. In order to encourage the litter-dwelling invertebrates that tend to be missing from arable systems, agri-environment schemes should aim to minimize soil cultivation and develop a substantial surface litter layer. However, this may conflict with other aims of these schemes, such as enhancing floristic and pollinator diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global change drivers are known to interact in their effects on biodiversity, but much research to date ignores this complexity. As a consequence, there are problems in the attribution of biodiversity change to different drivers and, therefore, our ability to manage habitats and landscapes appropriately. Few studies explicitly acknowledge and account for interactive (i.e., nonadditive) effects of land use and climate change on biodiversity. One reason is that the mechanisms by which drivers interact are poorly understood. We evaluate such mechanisms, including interactions between demographic parameters, evolutionary trade-offs and synergies and threshold effects of population size and patch occupancy on population persistence. Other reasons for the lack of appropriate research are limited data availability and analytical issues in addressing interaction effects. We highlight the influence that attribution errors can have on biodiversity projections and discuss experimental designs and analytical tools suited to this challenge. Finally, we summarize the risks and opportunities provided by the existence of interaction effects. Risks include ineffective conservation management; but opportunities also arise, whereby the negative impacts of climate change on biodiversity can be reduced through appropriate land management as an adaptation measure. We hope that increasing the understanding of key mechanisms underlying interaction effects and discussing appropriate experimental and analytical designs for attribution will help researchers, policy makers, and conservation practitioners to better minimize risks and exploit opportunities provided by land use-climate change interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Riparian clearing and the removal of wood from channels have affected many streams in agricultural landscapes. As a result, these streams often have depauperate in-stream wood loads, and therefore decreased habitat complexity and lower levels of in-stream biodiversity. The introduction of wood was investigated as a possible rehabilitation technique for agricultural streams. Wood was re-introduced to eight streams in two separate high-rainfall, intensively grazed regions of Victoria, Australia and the effect on aquatic macroinvertebrate communities was measured. The addition of wood increased overall family richness and the richness of most functional feeding groups occupying edge and benthic habitats within the stream. Wood addition led to less overlap between benthic and edge macroinvertebrate communities, suggesting increased habitat heterogeneity within the stream ecosystem. Of all sampled habitats, wood supported the greatest density of families and was colonised by all functional feeding groups. Wood habitats also had the highest overall richness and supported the most taxa that were sensitive to disturbance. These findings suggest that re-introducing wood to agricultural streams is an appropriate rehabilitation technique where those streams are affected by reduced habitat complexity. Additional work is needed to confirm these findings over larger spatial and temporal scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much of northern Australia’s tropical savannas are subject to annual intense and extensive late dry season wildfires, much of this occurring on Aboriginal land. Based on the successful West Arnhem Land Fire Abatement (WALFA) model, which has resulted in significantly reduced greenhouse gas emissions, fire abatement programmes are planned for other significant regions of northern Australia. This study offers an introduction to the ideas behind a proposed environmental and social benchmarking project that aims to evaluate the potential benefits of expanding the fire abatement program in northern Australia, under the leadership of NAILSMA and its partners. Gaining a better understanding of the biodiversity, social and cultural outcomes of these fire abatement activities is an important component of demonstrating multiple benefits of these programmes. We emphasize the role of both biodiversity and cultural mapping to establish benchmarks and baseline states, with the involvement of Indigenous communities being a key element to optimize social and biodiversity benefits. Consultation with Traditional Owners and ranger groups to establish an agreed set of targets, indicators and sampling protocols and methodologies are critical component of this process. Examples of preliminary work to date are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.Habitat loss and associated fragmentation are major drivers of biodiversity decline, and understanding how they affect population processes (e.g. dispersal) is an important conservation goal. In a large-scale test employing 10 × 10 km units of replication, three species of Australian birds, the fuscous honeyeater, yellow-tufted honeyeater and white-plumed honeyeater, responded differently to fragmentation. The fuscous and yellow-tufted honeyeaters are ‘decliners’ that disappeared from suitable habitat in landscapes where levels of tree-cover fell below critical thresholds of 17 and 8%, respectively. The white-plumed honeyeater is a ‘tolerant’ species whose likelihood of occurrence in suitable habitat was independent of landscape-level tree-cover. 2.To determine whether the absence of the two decliner species in low tree-cover landscapes can be explained by reduced genetic connectivity, we looked for signatures of reduced mobility and gene flow in response to fragmentation across agricultural landscapes in the Box-Ironbark region of north-central Victoria, Australia. 3.We compared patterns of genetic diversity and population structure at the regional scale and across twelve 100 km2 landscapes with different tree-cover extents. We used genetic data to test landscape models predicting reduced dispersal through the agricultural matrix. We tested for evidence of sex-biased dispersal and sex-specific responses to fragmentation. 4.Reduced connectivity may have contributed to the disappearance of the yellow-tufted honey-eater from low tree-cover landscapes, as evidenced by male bias and increased relatedness among males in low tree-cover landscapes and signals of reduced gene flow and mobility through the agricultural matrix. We found no evidence for negative effects of fragmentation on gene flow in the other decliner, the fuscous honeyeater, suggesting that undetected pressures act on this species. As expected, there was no evidence for decreased movement through fragmented landscapes for the tolerant white-plumed honeyeater. 5.We demonstrated effects of habitat loss and fragmentation (stronger patterns of genetic differentiation, increased relatedness among males) on the yellow-tufted honeyeater above the threshold at which probability of occurrence dropped. Increasing extent and structural connectivity of habitat should be an appropriate management action for this species and other relatively sedentary woodland specialist species for which it can be taken as representative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alpine grasslands are ecosystems with a great diversity of plant species. However, little is known about other levels of biodiversity, such as landscape diversity, diversity of biological interactions of plants with herbivores or fungal pathogens, and genetic diversity. We therefore explored natural and anthropogenic determinants of grassland biodiversity at several levels of biological integration, from the genetic to the landscape level in the Swiss Alps. Differences between cultural traditions (Romanic, Germanic, and Walser) turned out to still affect land use diversity and thus landscape diversity. Increasing land use diversity, in turn, increased plant species diversity per village. However, recent land use changes have reduced this diversity. Within grassland parcels, plant species diversity was higher on unfertilized mown grasslands than on fertilized or grazed ones. Most individual plants were affected by herbivores and fungal leaf pathogens, reflecting that parcels harbored a great diversity of herbivores and pathogens. However, as plant damage by herbivores and pathogens was not severe, conserving these biological interactions among plants is hardly compromising agricultural goals. A common-garden experiment revealed genetic differentiation of the important fodder grass Poa alpina between mown and grazed sites, suggesting adaptation. Per-village genetic diversity of Poa alpina was greater in villages with higher land use diversity, analogous to the higher plant species diversity there. Overall, landscape diversity and biodiversity within grassland parcels are currently declining. As this contradicts the intention of Swiss law and international agreements, financial incentives need to be re-allocated and should focus on promoting high biodiversity at the local and the landscape level. At the same time, this will benefit landscape attractiveness for tourists and help preserve a precious cultural heritage in the Swiss Alps.