50 resultados para recyclability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing importance of conserving natural resources and moving toward sustainable practices, the aging transportation infrastructure can benefit from these ideas by improving their existing recycling practices. When an asphalt pavement needs to be replaced, the existing pavement is removed and ground up. This ground material, known as reclaimed asphalt pavement (RAP), is then added into new asphalt roads. However, since RAP was exposed to years of ultraviolet degradation and environmental weathering, the material has aged and cannot be used as a direct substitute for aggregate and binder in new asphalt pavements. One material that holds potential for restoring the aged asphalt binder to a usable state is waste engine oil. This research aims to study the feasibility of using waste engine oil as a recycling agent to improve the recyclability of pavements containing RAP. Testing was conducted in three phases, asphalt binder testing, advanced asphalt binder testing, and laboratory mixture testing. Asphalt binder testing consisted of dynamic shear rheometer and rotational viscometer testing on both unaged and aged binders containing waste engine oil and reclaimed asphalt binder (RAB). Fourier Transform Infrared Spectroscopy (FTIR) testing was carried out to on the asphalt binders blended with RAB and waste engine oil compare the structural indices indicative of aging. Lastly, sample asphalt samples containing waste engine oil and RAP were subjected to rutting testing and tensile strength ratio testing. These tests lend evidence to support the claim that waste engine oil can be used as a rejuvenating agent to chemically restore asphalt pavements containing RAP. Waste engine oil can reduce the stiffness and improve the low temperature properties of asphalt binders blended with RAB. Waste engine oil can also soften asphalt pavements without having a detrimental effect on the moisture susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buildings and infrastructure represent principal assets of any national economy as well as prime sources of environmental degradation. Making them more sustainable represents a key challenge for the construction, planning and design industries and governments at all levels; and the rapid urbanisation of the 21st century has turned this into a global challenge. This book embodies the results of a major research programme by members of the Australia Co-operative Research Centre for Construction Innovation and its global partners, presented for an international audience of construction researchers, senior professionals and advanced students. It covers four themes, applied to regeneration as well as to new build, and within the overall theme of Innovation: Sustainable Materials and Manufactures, focusing on building material products, their manufacture and assembly – and the reduction of their ecological ‘fingerprints’, the extension of their service lives, and their re-use and recyclability. It also explores the prospects for applying the principles of the assembly line. Virtual Design, Construction and Management, viewed as increasing sustainable development through automation, enhanced collaboration (such as virtual design teams), real time BL performance assessment during design, simulation of the construction process, life-cycle management of project information (zero information loss) risk minimisation, and increased potential for innovation and value adding. Integrating Design, Construction and Facility Management over the Project Life Cycle, by converging ICT, design science engineering and sustainability science. Integration across spatial scales, enabling building–infrastructure synergies (such as water and energy efficiency). Convergences between IT and design and operational processes are also viewed as a key platform increased sustainability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three new electron-rich metal-organic frameworks (MOF-1-MOF-3) have been synthesized by employing ligands bearing aromatic tags. The key role of the chosen aromatic tags is to enhance the -electron density of the luminescent MOFs. Single-crystal X-ray structures have revealed that these MOFs form three-dimensional porous networks with the aromatic tags projecting inwardly into the pores. These highly luminescent electron-rich MOFs have been successfully utilized for the detection of explosive nitroaromatic compounds (NACs) on the basis of fluorescence quenching. Although all of the prepared MOFs can serve as sensors for NACs, MOF-1 and MOF-2 exhibit superior sensitivity towards 4-nitrotoluene (4-NT) and 2,4-dinitrotoluene (DNT) compared to 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB). MOF-3, on the other hand, shows an order of sensitivity in accordance with the electron deficiencies of the substrates. To understand such anomalous behavior, we have thoroughly analyzed both the steady-state and time-resolved fluorescence quenching associated with these interactions. Determination of static Stern-Volmer constants (K-S) as well as collisional constants (K-C) has revealed that MOF-1 and MOF-2 have higher K-S values with 4-NT than with TNT, whereas for MOF-3 the reverse order is observed. This apparently anomalous phenomenon was well corroborated by theoretical calculations. Moreover, recyclability and sensitivity studies have revealed that these MOFs can be reused several times and that their sensitivities towards TNT solution are at the parts per billion (ppb) level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detection of trace amounts of explosive materials is significantly important for security concerns and pollution control. Four multicomponent metal organic frameworks (MOFs-12, 13, 23, and 123) have been synthesized by employing ligands embedded with fluorescent tags. The multicomponent assembly of the ligands was utilized to acquire a diverse electronic behavior of the MOFs and the fluorescent tags were strategically chosen to enhance the electron density in the MOFs. The phase purity of the MOFs was established by PXRD, NMR spectroscopy, and finally by singlecrystal XRD. Single-crystal structures of the MOFs-12 and 13 showed the formation of three-dimensional porous networks with the aromatic tags projecting inwardly into the pores. These electron-rich MOFs were utilized for detection of ex- plosive nitroaromatic compounds (NACs) through fluorescence quenching with high selectivity and sensitivity. The rate of fluorescence quenching for all the MOFs follows the order of electron deficiency of the NACs. We also showed the detection of picric acid (PA) by luminescent MOFs is not always reliable and can be misleading. This attracts our attention to explore these MOFs for sensing picryl chloride (PC), which is as explosive as picric acid and used widely to prepare more stable explosives like 2,4,6-trinitroaniline from PA. Moreover, the recyclability and sensitivity studies indicated that these MOFs can be reused several times with parts per billion (ppb) levels of sensitivity towards PC and 2,4,6-trinitrotoluene (TNT).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unprecedented morphology of a titanium dioxide (TiO2) and cadmium sulfide (CdS) self-assembly obtained using a `truly' one-pot and highly cost effective method with a multi-gram scale yield is reported here. The TiO2-CdS assembly, comprising of TiO2 and CdS nanoparticles residing next to each other homogeneously self-assembling into `woollen knitting ball' like microspheres, exhibited remarkable potential as a visible light photocatalyst with high recyclability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two shape-persistent covalent cages (CC1(r) and CC2(r)) have been devised from triphenyl amine-based trialdehydes and cyclohexane diamine building blocks utilizing the dynamic imine chemistry followed by imine bond reduction. The cage compounds have been characterized by several spectroscopic techniques which suggest that CC1(r) and CC2(r) are 2+3] and 8+12] self-assembled architectures, respectively. These state-of-the-art molecules have a porous interior and stable aromatic backbone with multiple palladium binding sites to engineer the controlled synthesis and stabilization of ultrafine palladium nanoparticles (PdNPs). As-synthesized cage-embedded PdNPs have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and powder X-ray diffraction (PXRD). Inductively coupled plasma optical emission spectrometry reveals that Pd@CC1(r) and Pd@CC2(r) have 40 and 25 wt% palladium loading, respectively. On the basis of TEM analysis, it has been estimated that as small as similar to 1.8 nm PdNPs could be stabilized inside the CC1(r), while larger CC2(r) could stabilize similar to 3.7 nm NPs. In contrast, reduction of palladium salts in the absence of the cages form structure less agglomerates. The well-dispersed cage-embedded NPs exhibit efficient catalytic performance in the cyanation of aryl halides under heterogeneous, additive-free condition. Moreover, these materials have excellent stability and recyclability without any agglomeration of PdNPs after several cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tensile and compression properties of self-reinforced poly(ethylene terephthalate) (SrPET) composites has been investigated. SrPET composites or all-polymer composites have improved mechanical properties compared to the bulk polymer but with maintained recyclability. In contrast to traditional carbon/glass fibre reinforced composites, SrPET composites are very ductile, resulting in high failure strains without softening or catastrophic failure. In tension, the SrPET composites behave linear elastically until the fibre-matrix interface fails, at which point the stiffness starts decreasing. As the material is further strained, strain hardening occurs and the specimen finally fails at a global strain above 10%. In compression, the composite initially fails through fibre yielding, and at higher strains through fibre bending. The stress-strain response is reminiscent of an elastic-perfectly plastic material with a high strain to failure (typically over 10%). This indicates that SrPET composites are not only candidates as semi-structural composites but also as highly efficient energy absorbing materials. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A magnetic nanoparticle (MNP)-supported di(2-pyridyl)methanol palladium dichloride complex was prepared via click chemistry. The MNP-supported catalyst was evaluated in Suzuki coupling reaction in term of activity and recyclability in DMF. It was found to be highly efficient for Suzuki coupling reaction using aryl bromides as substrates and could be easily separated by an external magnet and reused in five consecutive runs without obvious loss of activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimentally simple and inexpensive catalyst system based on hexabutylguanidinium/ZnBr, has been developed for the coupling of carbon dioxide and epoxides to form cyclic carbonates with significant catalytic activity under mild reaction conditions without using additional organic solvents (e.g. the turnover frequencies (TOF, h(-1)) values as high as 6.6 x 10(3) h(-1) for styrene oxide and 1.01 x 10(4) h(-1) for epichlorohydrin). This catalyst system also offers the advantages of recyclability and reusability. Therefore, it is a very effective, environmentally benign, and simple catalytic process. The special steric and electrophilic characteristics of hexabutylguanidinium bromide ionic liquid result in the prominent performance of this novel catalyst system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of Hunig's base tethered ammonium ionic liquids have been used to catalyse the Knoevenagel condensation of aldehydes/ketones with malononitrile and ethyl cyanoacetate. The reactions were performed under homogeneous and under biphasic, liquid-liquid and liquid-silica supported ionic liquid, conditions with the biphasic systems employing cyclohexene as the second phase. By increasing the distance between the ammonium head group and Hunig's base the activity of the catalyst was found to increase. Higher activity, in general, was found under homogeneous reaction conditions; however, the recyclability of the catalyst was improved by supporting the BIL under biphasic conditions. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The facile syntheses of 1,2- and 3,5-cyclic sulfite and sulfate furanoside diesters were conducted in molecular solvents and ionic liquids in the presence of immobilised morpholine. Molecular solvents and ionic liquids performed similarly with regards to overall yields. However, the use of ILs allowed for the reactions to be carried out under atmospheric conditions and showed good recyclability. Additionally, increases in product stability was achieved in ILs over organic solvents, in particular, in bis{(trifluoromethanesulfonyl)imide) and trispentafluoro-ethyltrifluorophosphate-based ionic liquids, which were also excellent media to control the hydrolysis of thionyl chloride and sulfuryl chloride. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perspective and front cover article: Homogeneous catalysts entrapped in silica matrices, including ionic liquid containing 'ionogels', exhibit high selectivity, unexpected activity and excellent recyclability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ta2O5-SiO2 catalysts were prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) and tantalum (V) ethoxide as the sources of silicon and tantalum, and two families of quaternary ammonium salts, [CnH(2n+1)(CH3)(3)N]Br (n = 14, 16, 18) and [(CnH(2n+1))(4)N]Br (n = 10, 12, 16, 18) as surfactants. The catalysts were compared for the selective suffoxidation of 4,6-dimethyl-2-thiomethylpyrimidine using peroxide as an oxidising agent in a range of ionic liquids and organic solvents. The sol-gel catalysts were also compared with tantalum on MCM-41 prepared by grafting. The catalysts were characterized from adsorption-desorption isotherms of N-2, XRD patterns, small-angle X-ray scattering, IR spectra from adsorbed pyridine and CDCl3, XPS spectra, and Si-29 magic angle spinning (MAS) NNIR experiments. The effect of recycling on the catalyst leaching and selectivity/activity was also studied. High activities and selectivities were found in [NTf2](-) based ionic liquids and organic solvents with good recyclability of the catalyst. Tantalum was found in the solution after reaction; however, this was determined to be due to entrapment of catalyst particulates, as opposed to leaching of the active metal. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of carbon fibre composites is growing in many sectors but their use remains stronger in very high value industries such as aerospace where the demands of the application more easily justify the high energy input needed and the corresponding costs incurred. This energy and cost input is returned through gains over the whole life of the product, with for example, longer maintenance intervals for an aircraft and lower fuel burn. Thermoplastic composites however have a different energy and cost profile compared to traditional thermosets with notable differences in recyclability, but this profile is not well quantified or documented. This study considers the key process control parameters and identifies an optimal window for processing, along with the effect this has on the final characteristics of the manufactured parts. Interactions between parameters and corresponding sensitivities are extracted from the results.