999 resultados para reconhecimento de padrões


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An activity for introducing hierarchical cluster analysis (HCA) and principal component analysis (PCA) during the Instrumental Analytical Chemistry course is presented. The posed problem involves the discrimination of mineral water samples according to their geographical origin. Thirty-seven samples of 9 different brands were considered and the results from the determination of Na, K, Mg, Ca, Sr and Ba were taken into account. Non-supervised methods for pattern recognition were explored to construct a dendrogram, score and loading plots. The devised activity can be adopted for introducing Chemometrics devoted to data handling, stressing its importance in the context of modern Analytical Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Em cenas naturais, ocorrem com certa freqüência classes espectralmente muito similares, isto é, os vetores média são muito próximos. Em situações como esta, dados de baixa dimensionalidade (LandSat-TM, Spot) não permitem uma classificação acurada da cena. Por outro lado, sabe-se que dados em alta dimensionalidade [FUK 90] tornam possível a separação destas classes, desde que as matrizes covariância sejam suficientemente distintas. Neste caso, o problema de natureza prática que surge é o da estimação dos parâmetros que caracterizam a distribuição de cada classe. Na medida em que a dimensionalidade dos dados cresce, aumenta o número de parâmetros a serem estimados, especialmente na matriz covariância. Contudo, é sabido que, no mundo real, a quantidade de amostras de treinamento disponíveis, é freqüentemente muito limitada, ocasionando problemas na estimação dos parâmetros necessários ao classificador, degradando portanto a acurácia do processo de classificação, na medida em que a dimensionalidade dos dados aumenta. O Efeito de Hughes, como é chamado este fenômeno, já é bem conhecido no meio científico, e estudos vêm sendo realizados com o objetivo de mitigar este efeito. Entre as alternativas propostas com a finalidade de mitigar o Efeito de Hughes, encontram-se as técnicas de regularização da matriz covariância. Deste modo, técnicas de regularização para a estimação da matriz covariância das classes, tornam-se um tópico interessante de estudo, bem como o comportamento destas técnicas em ambientes de dados de imagens digitais de alta dimensionalidade em sensoriamento remoto, como por exemplo, os dados fornecidos pelo sensor AVIRIS. Neste estudo, é feita uma contextualização em sensoriamento remoto, descrito o sistema sensor AVIRIS, os princípios da análise discriminante linear (LDA), quadrática (QDA) e regularizada (RDA) são apresentados, bem como os experimentos práticos dos métodos, usando dados reais do sensor. Os resultados mostram que, com um número limitado de amostras de treinamento, as técnicas de regularização da matriz covariância foram eficientes em reduzir o Efeito de Hughes. Quanto à acurácia, em alguns casos o modelo quadrático continua sendo o melhor, apesar do Efeito de Hughes, e em outros casos o método de regularização é superior, além de suavizar este efeito. Esta dissertação está organizada da seguinte maneira: No primeiro capítulo é feita uma introdução aos temas: sensoriamento remoto (radiação eletromagnética, espectro eletromagnético, bandas espectrais, assinatura espectral), são também descritos os conceitos, funcionamento do sensor hiperespectral AVIRIS, e os conceitos básicos de reconhecimento de padrões e da abordagem estatística. No segundo capítulo, é feita uma revisão bibliográfica sobre os problemas associados à dimensionalidade dos dados, à descrição das técnicas paramétricas citadas anteriormente, aos métodos de QDA, LDA e RDA, e testes realizados com outros tipos de dados e seus resultados.O terceiro capítulo versa sobre a metodologia que será utilizada nos dados hiperespectrais disponíveis. O quarto capítulo apresenta os testes e experimentos da Análise Discriminante Regularizada (RDA) em imagens hiperespectrais obtidos pelo sensor AVIRIS. No quinto capítulo são apresentados as conclusões e análise final. A contribuição científica deste estudo, relaciona-se à utilização de métodos de regularização da matriz covariância, originalmente propostos por Friedman [FRI 89] para classificação de dados em alta dimensionalidade (dados sintéticos, dados de enologia), para o caso especifico de dados de sensoriamento remoto em alta dimensionalidade (imagens hiperespectrais). A conclusão principal desta dissertação é que o método RDA é útil no processo de classificação de imagens com dados em alta dimensionalidade e classes com características espectrais muito próximas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o advento dos sensores hiperespectrais se tornou possível em sensoriamento remoto, uma serie de diferentes aplicações. Uma delas, é a possibilidade de se discriminar classes com comportamentos espectrais quase idênticas. Porém um dos principais problemas encontrados quando se trabalha com dados de alta dimensionalidade, é a dificuldade em estimar os inúmeros parâmetros que se fazem necessários. Em situações reais é comum não se ter disponibilidade de tamanho de amostra suficiente, por exemplo, para se estimar a matriz de covariâncias de forma confiável. O sensor AVIRIS fornece uma riqueza de informações sobre os alvos, são 224 bandas cobrindo o espectro eletromagnético, o que permite a observação do comportamento espectral dos alvos de forma muito detalhada. No entanto surge a dificuldade de se contar com uma amostra suficiente para se estimar a matriz de covariâncias de uma determinada classe quando trabalhamos com dados do sensor AVIRIS, para se ter uma idéia é preciso estimar 25.200 parâmetros somente na matriz de covariâncias, o que necessitaria de uma amostra praticamente impraticável na realidade. Surge então a necessidade de se buscar formas de redução da dimensionalidade, sem que haja perda significativa de informação. Esse tipo de problema vem sendo alvo de inúmeros estudos na comunidade acadêmica internacional. Em nosso trabalho pretendemos sugerir a redução da dimensionalidade através do uso de uma ferramenta da geoestatística denominada semivariograma. Investigaremos se os parâmetros calculados para determinadas partições do transecto de bandas do sensor AVIRIS são capazes de gerar valores médios distintos para classes com comportamentos espectrais muito semelhantes, o que por sua vez, facilitaria a classificação/discriminação destas classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a diagnosis faults system (rotor, stator, and contamination) of three-phase induction motor through equivalent circuit parameters and using techniques patterns recognition. The technology fault diagnostics in engines are evolving and becoming increasingly important in the field of electrical machinery. The neural networks have the ability to classify non-linear relationships between signals through the patterns identification of signals related. It is carried out induction motor´s simulations through the program Matlab R & Simulink R , and produced some faults from modifications in the equivalent circuit parameters. A system is implemented with multiples classifying neural network two neural networks to receive these results and, after well-trained, to accomplish the identification of fault´s pattern

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of intelligent agents in multi-classifier systems appeared in order to making the centralized decision process of a multi-classifier system into a distributed, flexible and incremental one. Based on this, the NeurAge (Neural Agents) system (Abreu et al 2004) was proposed. This system has a superior performance to some combination-centered methods (Abreu, Canuto, and Santana 2005). The negotiation is important to the multiagent system performance, but most of negotiations are defined informaly. A way to formalize the negotiation process is using an ontology. In the context of classification tasks, the ontology provides an approach to formalize the concepts and rules that manage the relations between these concepts. This work aims at using ontologies to make a formal description of the negotiation methods of a multi-agent system for classification tasks, more specifically the NeurAge system. Through ontologies, we intend to make the NeurAge system more formal and open, allowing that new agents can be part of such system during the negotiation. In this sense, the NeurAge System will be studied on the basis of its functioning and reaching, mainly, the negotiation methods used by the same ones. After that, some negotiation ontologies found in literature will be studied, and then those that were chosen for this work will be adapted to the negotiation methods used in the NeurAge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os estudos ambientais necessitam de informações sobre a cobertura e o uso da terra. Este trabalho apresenta a aplicação de dados de sensores remotos orbitais (óticos e de radares) na validação de padrões de uso e cobertura do solo na planície costeira amapaense para fins de mapeamento e reconhecimento da dinâmica natural e antrópica. Esta costa é submetida a uma dinâmica intensa devido à magnitude dos processos costeiros (marés-pororoca), sua localização geográfica, influenciada pelo rio Amazonas e pela Zona de Convergência Intertropical, e processos antrópicos associados à bubalinocultura. A análise foi realizada aplicando-se dados de satélite (JERS-1, RADARSAT-1, Landsat 7 e DEM do SRTM) digitalmente processados em abordagem multisensor, multiescala e multitemporal, correlacionada com dados pretéritos e informações de campo. A análise dos produtos gerados e dados colaterais permitiu distinguir oito padrões de uso e cobertura do solo: florestas de mangue, florestas de várzeas, campos arbustivos, áreas de vegetação campestre, campo antrópico, zona de intermaré, canal estuarino e lagos, além de feições morfológicas lineares associadas a estes padrões. Estas informações são importantes para o mapeamento dos ambientes costeiros e fundamentais para o reconhecimento da dinâmica na região.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biociências - FCLAS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Internet das Coisas é um novo paradigma de comunicação que estende o mundo virtual (Internet) para o mundo real com a interface e interação entre objetos. Ela possuirá um grande número de dispositivos heteregôneos interconectados, que deverá gerar um grande volume de dados. Um dos importantes desafios para seu desenvolvimento é se guardar e processar esse grande volume de dados em aceitáveis intervalos de tempo. Esta pesquisa endereça esse desafio, com a introdução de serviços de análise e reconhecimento de padrões nas camadas inferiores do modelo de para Internet das Coisas, que procura reduzir o processamento nas camadas superiores. Na pesquisa foram analisados os modelos de referência para Internet das Coisas e plataformas para desenvolvimento de aplicações nesse contexto. A nova arquitetura de implementada estende o LinkSmart Middeware pela introdução de um módulo para reconhecimento de padrões, implementa algoritmos para estimação de valores, detecção de outliers e descoberta de grupos nos dados brutos, oriundos de origens de dados. O novo módulo foi integrado à plataforma para Big Data Hadoop e usa as implementações algorítmicas do framework Mahout. Este trabalho destaca a importância da comunicação cross layer integrada à essa nova arquitetura. Nos experimentos desenvolvidos na pesquisa foram utilizadas bases de dados reais, provenientes do projeto Smart Santander, de modo a validar da nova arquitetura de IoT integrada aos serviços de análise e reconhecimento de padrões e a comunicação cross-layer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A exposição de um indivíduo a duas línguas diferentes poderia trazer benefícios ao desenvolvimento auditivo. OBJETIVO: Analisar o comportamento auditivo em testes de reconhecimento de padrões temporais (Teste de Padrão de Freqüência e de Duração) e de escuta dicótica de dissílabos familiares (Teste Dicótico de Dígitos) e não-familiares (Teste Dicótico de Dissílabos Alternados/ SSW em português) em descendentes de japoneses, que moram no Brasil, falantes ou não da língua japonesa, comparando-os ao desempenho de brasileiros não-descendentes de orientais e que não possuem contato com o idioma japonês. MÉTODO: 60 sujeitos, com idade entre 17 e 40 anos, escolaridade superior ao terceiro ano do Ensino Médio, reunidos em três grupos: GJJ, descendentes de japoneses falantes do português Brasileiro e do Japonês; GJP, descendentes de japoneses falantes do português e não-falantes do Japonês; GBP, não-descendentes de orientais falantes do português. Foram submetidos a um questionário e aos testes de processamento temporal quanto à freqüência (TPF) e duração (TPD), teste dicótico de dígitos (TDD) e SSW. RESULTADOS: GJJ e GJP apresentaram melhor desempenho no TPF em relação ao TPD e tiveram no TPF média de acertos maior do que o grupo GBP. O grupo GJJ, no teste SSW apresentou média de acertos significantemente superior ao GJP e ao GBP. CONCLUSÃO: A experienciação auditiva fornecida pelo bilingüismo (idioma japonês e português brasileiro) facilitou o desempenho no SSW.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Propuesta de reconocimiento del estándar de comodidad en clientes con pénfigo vulgar utilizando la Lógica FuzzyO objetivo é propor a Lógica Fuzzy para reconhecimento de padrões de conforto de pessoas submetidas a uma tecnologia de cuidar em Enfermagem por apresentarem pênfigo vulgar, uma doença cutâneo-mucosa rara que acomete principalmente adultos. A proposta aplicável em métodos experimentais com sujeitos submetidos à comparação quali-quantitativa (taxonomia/pertinência) do padrão de conforto antes e depois da intervenção. Requer o registro em escala cromática correspondente à intensidade de cada atributo: dor; mobilidade e comprometimento da autoimagem. As regras Fuzzy estabelecidas pela máquina de inferência definem o padrão de conforto em desconforto máximo, mediano e mínimo, traduzindo a eficácia dos cuidados de Enfermagem. Apesar de pouco utilizada na área de Enfermagem, essa lógica viabiliza pesquisas sem dimensionamento a priori do número de sujeitos em função da estimação de parâmetros populacionais. Espera-se avaliação do padrão de conforto do cliente com pênfigo diante da tecnologia aplicada de forma personalizada, conduzindo a avaliação global.