1000 resultados para receptor supersensitivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoglutamatergic function is implicated in the pathogenesis of schizophrenia, and supersensitivity of platelet NMDA receptors has been reported in schizophrenia. The aim of this study was to examine the platelet glutamate receptor sensitivity in patients with schizophrenia (n=12), mania with psychotic features (n=10) and depression with psychotic features (n=10) and matched controls (n=12) in order to assess if this is a marker of schizophrenia or occurs in other psychotic conditions. Glutamate receptor sensitivity was assessed using the intracellular calcium response to glutamate measured with spectrofluorometry. The percentage response of the schizophrenic and depressed psychotic subjects to glutamate stimulation was significantly greater than control subjects (p<0.005). The mania with psychotic features group was not significantly different to controls. This data suggests that platelet glutamate receptors may be supersensitive in schizophrenia and depression with psychotic features. Furthermore, the platelet may be a possible peripheral marker of glutamate function in schizophrenia and depression with psychotic features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dysregulation of glutamate has been described in depression, and supersensitivity of platelet glutamate receptors has been found in both psychotic major depression and schizophrenia. The aim of this study was to examine the platelet glutamate receptor sensitivity in patients with nonpsychotic, unipolar major depression to assess whether this is a marker of depression or of psychosis. Glutamate receptor sensitivity was assessed using the platelet intracellular calcium response to glutamate (0-100 micromol) measured by spectrofluorometry. The depression group showed a significantly greater platelet intracellular calcium response to glutamate stimulation than the control group, both in terms of absolute values (p = 0.007) and percentage of response from baseline (p = 0.030). These data suggest that platelet glutamate receptors may be supersensitive in depression and that the platelet may be a possible peripheral marker of glutamate function in depression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system and alterations in central GABAergic transmission may contribute to the symptoms of a number of neurological and psychiatric disorders. Because of this relationship, numerous laboratories are attempting to develop agents which will selectively enhance GABA neurotransmission in brain. Due to these efforts, several promising compounds have recently been discovered. Should these drugs prove to be clinically effective, they will be used to treat chronic neuropsychiatric disabilities and, therefore, will be administered for long periods of time. Accordingly, the present investigation was undertaken to determine the neurochemical consequences of chronic activation of brain GABA systems in order to better define the therapeutic potential and possible side-effect liability of GABAmimetic compounds.^ Chronic (15 day) administration to rats of low doses of amino-oxyacetic acid (AOAA, 10 mg/kg, once daily), isonicotinic acid hydrazide (20 mg/kg, b.i.d.), two non-specific inhibitors of GABA-T, the enzyme which catabolizes GABA in brain, or (gamma)-acetylenic GABA (10 mg/kg, b.i.d.) a catalytic inhibitor of this enzyme, resulted in a significant elevation of brain and CSF GABA content throughout the course of treatment. In addition, chronic administration of these drugs, as well as the direct acting GABA receptor agonists THIP (8 mg/kg, b.i.d.) or kojic amine (18 mg/kg, b.i.d.) resulted in a significant increase in dopamine receptor number and a significant decrease in GABA receptor number in the corpus striatum of treated animals as determined by standard in vitro receptor binding techniques. Changes in the GABA receptor were limited to the corpus striatum and occurred more rapidly than did alterations in the dopamine receptor. The finding that dopamine-mediated stereotypic behavior was enhanced in animals treated chronically with AOAA suggested that the receptor binding changes noted in vitro have some functional consequence in vitro.^ Coadministration of atropine (a muscarinic cholinergic receptor antagonist) blocked the GABA-T inhibitor-induced increase in striatal dopamine receptors but was without effect on receptor alterations seen following chronic administration of direct acting GABA receptor agonists. Atropine administration failed to influence the drug-induced decreases in striatal GABA receptors.^ Other findings included the discovery that synaptosomal high affinity ('3)H-choline uptake, an index of cholinergic neuronal activity, was significantly increased in the corpus striatum of animals treated acutely, but not chronically, with GABAmimetics.^ It is suggested that the dopamine receptor supersensitivity observed in the corpus striatum of animals following long-term treatment with GABAmimetics is a result of the chronic inhibition of the nigrostriatal dopamine system by these drugs. Changes in the GABA receptor, on the other hand, are more likely due to a homospecific regulation of these receptors. An hypothesis based on the different sites of action of GABA-T inhibitors vis-a-vis the direct acting GABA receptor agonists is proposed to account for the differential effect of atropine on the response to these drugs.^ The results of this investigation provide new insights into the functional interrelationships that exist in the basal ganglia and suggest that chronic treatment with GABAmimetics may produce extrapyramidal side-effects in man. In addition, the constellation of neurochemical changes observed following administration of these drugs may be a useful guide for determining the GABAmimetic properties of neuropharmacological agents. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rats with unilateral lesion of the substantia nigra pars compacta (SNpc) have been used as a model of Parkinson`s disease. Depending on the lesion protocol and on the drug challenge, these rats rotate in opposite directions. The aim of the present study was to propose a model to explain how critical factors determine the direction of these turns. Unilateral lesion of the SNpc was induced with 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Separate analysis showed that neither the type of neurotoxin nor the site of lesion along the nigrostriatal. pathway was able to predict the direction of the turns these rats made after they were challenged with apomorphine. However, the combination of these two factors determined the magnitude of the lesion estimated by tyrosine-hydroxylase immunohistochemistry and HPLC-ED measurement of striatal dopamine. Very small lesions did Dot cause turns, medium-size lesions caused ipsiversive turns, and large lesions caused contraversive turns. Large-size SNpc lesions resulted in an increased binding of [H-3] raclopride to D2 receptors, while medium-size lesions reduced the binding of [H-3]SCH-23390 D1 receptors in the ipsilateral striatum. These results are coherent with the model proposing that after challenged with a dopamine receptor agonist, unilaterally SNpc-lesioned rats rotate toward the side with the weaker activation of dopamine receptors. This activation is weaker on the lesioned side in animals with small SNpc lesions due to the loss of dopamine, but stronger in animals with large lesions due to dopamine receptor supersensitivity. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypoglutamatergic function is implicated in the pathogenesis of schizophrenia. The aim of this study was to examine the platelet intracellular calcium response to glutamate using spectroflourometry in 15 schizophrenic patients and 15 matched control individuals as an index of platelet glutamate receptor sensitivity. Patients with schizophrenia had significantly lower baseline intracellular calcium levels than matched control individuals (P = 0.03). The percentage response of the schizophrenic individuals to glutamate stimulation was significantly greater than control individuals (P < 0.001). These data suggest that platelet glutamate receptors may be supersensitive in schizophrenia. Furthermore, the platelet may be a possible peripheral marker of glutamate function in schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high-affinity of [3H]y-aminobutyric acid (GABA) to GABAA receptors and [3H]baclofen to GABAB receptors were studied in the cerebellum of pyridoxine-deficient rats and compared to pyridoxine-supplemented controls. There was a significant increase in the maximal binding ( Bmax) of both GABAA and GABAB receptors with no significant difference in their binding affinities (Kd). The changes observed suggest a supersensitivity of GABAA and GABAB receptors which seems to correlate negatively with the concentration of GABA in the cerebellum of pyridoxine-deficient rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose: Overactive bladder is a complex and widely prevalent condition, but little is known about its physiopathology. We have carried out morphological, biochemical and functional assays to investigate the effects of long-term nitric oxide (NO) deficiency on muscarinic receptor and beta-adrenoceptor modulation leading to overactivity of rat detrusor muscle. Experimental approach: Male Wistar rats received No-nitro-L-arginine methyl ester (L-NAME) in drinking water for 7-30 days. Functional responses to muscarinic and b-adrenoceptor agonists were measured in detrusor smooth muscle (DSM) strips in Krebs-Henseleit solution. Measurements of [H-3] inositol phosphate, NO synthase (NOS) activity, [H-3] quinuclidinyl benzilate ([H-3]QNB) binding and bladder morphology were also performed. Key results: Long-term L-NAME treatment significantly increased carbachol-induced DSM contractile responses after 15 and 30 days; relaxing responses to the beta(3)-adrenoceptor agonist BRL 37-344 were significantly reduced at 30 days. Constitutive NOS activity in bladder was reduced by 86% after 7 days and maintained up to 30 days of L-NAME treatment. Carbachol increased sixfold the [H-3] inositol phosphate in bladder tissue from rats treated with L-NAME. [H-3] QNB was bound with an apparent KD twofold higher in bladder membranes after L-NAME treatment compared with that in control. No morphological alterations in DSM were found. Conclusions and implications: Long-term NO deficiency increased rat DSM contractile responses to a muscarinic agonist, accompanied by significantly enhanced KD values for muscarinic receptors and [H-3] inositol phosphate accumulation in bladder. This supersensitivity for muscarinic agonists along with reductions of beta(3)-adrenoceptor-mediated relaxations indicated that overactive DSM resulted from chronic NO deficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective was to estimate alterations in adrenergic receptor sites of guinea pig vas deferens, in vivo and in vitro, induced by chronic denervation. The denervation process induced an increased sensitivity (3-fold at the EC50 level) without alteration in the maximum response to phenylephrine in vitro. The sensitivity alteration was characterized by the decrease in the dissociation constant of phenylephrine for alpha-adrenoceptor [K-A: normal tissue 3.50 (0.75-16.21) x 10(-5) and denervated tissue 0.43 (0.11-1.67) x 10(-5) M, p < 0.05] without changing the dissociation constant of prazosin. A decrease in pD(2)' value for phenylephrine-phenoxybenzamine, probably due to a qualitative rather than a quantitative alteration in the alpha-adrenoceptor, was also shown in vitro [pD(2)': normal tissue (8.2776 +/- 0.0402) and denervated tissue (8.0051 +/- 0.0442), p < 0.05]. No change in sensitivity and maximum response to phenylephrine was observed in vivo after denervation, although an increased resistance of vas deferens to phenoxybenzamine blockade has been evidenced in this condition. (C) 1999 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Tityustoxin (TsTx), a toxic fraction of Tityus serrulatus venom, was studied on the isolated guinea-pig vas deferens. It increased significantly the maximal response of the preparation to both norepinephrine and acetylcholine and decreased the effective median dose of norepinephrine. 2. The effect of TsTx on norepinephrine median dose was unchanged when atropinized or pharmacologically 'denervated' preparations were used but was abolished when both procedures were associated. 3. Atropinization of pharmacologically denervated muscles almost never modify the TsTx-induced increase in the maximal response to norepinephrine. 4. On denervated or phentolamine-treated muscles TsTx-induced increase in the maximal response to acetylcholine was abolished. 5. It was concluded that toxin predominantly induces adrenergic postsynaptic supersensitivity. 6. Of minor significance, it also induces presynaptic cholinergic and adrenergic supersensitivity. 7. Comparison of these results with those of crude venom indicates that TsTx effects may result from the sum of the effects of subcomponents not demonstrated by the chemical procedures here utilized.