999 resultados para reazioni nucleari, pre-equilibrio, nucleo composto
Resumo:
Il presente lavoro e’ stato svolto nell'ambito della collaborazione NUCLEX, esperimento della Commissione Nazionale 3 dell'INFN per lo studio della dinamica delle reazioni nucleari indotte da ioni pesanti. In particolare l'oggetto della tesi riguarda l'analisi della competizione fra i diversi processi di emissione di particelle cariche leggere da sistemi composti. Piu’ precisamente in questa tesi si studiano e si confrontano le emissioni da sorgenti equilibrate e di pre-equilibrio di particelle alfa e protoni per due diverse reazioni di fusione, 16O +65Cu a 256 MeV e 19F +62Ni a 304 MeV, che portano entrambe alla formazione del nucleo composto 81Rb. I due sistemi sono stati scelti in modo da avere una reazione indotta da un proiettile costituito da un numero intero di particelle alfa (alfa-cluster) (16O) ed una seconda indotta da un proiettile non alfa cluster (19F), con la medesima energia del fascio (16 MeV/n). Lo scopo e’ di cercare evidenze sulla struttura a cluster di alfa dei nuclei con numero di massa A multiplo di 4 ed N=Z. Allo scopo di evidenziare i contributi delle diverse sorgenti di emissione delle particelle si e’ appli- cata la tecnica del Moving Source Fit agli spettri delle particlelle emesse e rivelate con l'apparato GARFIELD in coincidenza con i residui di evaporazione misurati tramite il rivelatore anulare Ring Counter. I risultati sperimentali ottenuti applicando la tecnica del Moving Source Fit ai nostri dati sperimentali sono interessanti e sembrano contraddire la maggiore emissione di particelle alfa da parte del sistema con proiettile a struttura alfa-cluster 16O. Le possibili ipotesi alla base di questo risultato abbastanza sorprendente sono tuttora in fase di discussione e saranno oggetto di ulteriori verifiche tramite lo studio di correlazioni piu’ esclusive e confronto con modelli di pre-equilibrio complessi.
Resumo:
Questo lavoro di tesi è stato svolto nell'ambito del gruppo Nucl-ex di Bologna dell'INFN. L'esperimento specifico si inquadra nello studio di collisioni di nuclei con numero di neutroni N uguale al numero di protoni Z (nuclei pari-pari). In particolare si vuol analizzare una reazione centrale, cioè a piccoli parametri d'impatto, nella quale i nuclei del proiettile e del bersaglio fondono assieme formando un sistema unico eccitato (nucleo composto) che successivamente decade. Nel caso della misura descritta sono stati utilizzati un fascio di 16O ed un bersaglio di 12C ed il sistema fuso che si forma è 28Si. Per rivelare le particelle provenienti dal decadimento è stato impiegato l'apparato G.AR.F.I.E.L.D. (General Array for Fragment Identification and Emitted Light particles in Dissipative collisions) accoppiato al rivelatore denominato Ring Counter (RCo). La misura è stata realizzata presso i Laboratori Nazionali dell'INFN di Legnaro (Pd) in collaborazione tra le Università e le sezioni INFN di Bologna, Firenze, Napoli e Padova. Il fascio è stato accelerato mediante l'acceleratore elettrostatico Tandem XTU, mentre il bersaglio era fisso nel sistema di riferimento del laboratorio. La misura di collisione è stata realizzata per tre diverse energie cinetiche del fascio: 90.5 MeV, 110 MeV e 130 MeV. Il lavoro è consistito principalmente nella partecipazione a diverse fasi della misura, tra cui preparazione, presa dati ed alcune calibrazioni energetiche dei rivelatori, fino ad ottenere risultati preliminari sulle distribuzioni di frequenza dei frammenti rivelati, sulle molteplicità e sulle distribuzioni angolari di particelle leggere. L'analisi preliminare effettuata ha mostrato che il valore medio di carica del residuo di evaporazione {Definito come il frammento che rimane nello stato fondamentale alla fine della catena di decadimento.} diminuisce all'aumentare dell'energia a disposizione. In modo consistente aumenta, all'aumentare dell'energia, la molteplicità media delle delle particelle leggere. Le distribuzioni angolari di particelle leggere mostrano andamenti molto simili fra le diverse energie, ma poco compatibili con il fatto che, all'aumentare dell'energia del fascio, diminuisce il cono di emissione di particelle di decadimento, in quanto aumenta la velocità del sistema fuso.
Resumo:
Le stelle sono strutture fluide in equilibrio idrostatico. Di conseguenza, per equilibrare la forza di gravità è necessario che nell'interno delle stelle ci siano meccanismi capaci di produrre una enorme quantità di energia durante tutto il ciclo vitale della stella, dal momento della sua "nascita" a quello della sua "morte". Questo elaborato vuole esplorare brevemente quali siano questi meccanismi, quanta energia producono e le condizioni necessarie affinché si inneschino. Il primo capitolo introduce nozioni base di fisica nucleare necessarie per la trattazione ed espone le principali reazioni nucleari fondamentali; il secondo capitolo si occupa delle reazioni termonucleari caratteristiche degli interni stellari, ponendo attenzione anche al lato energetico del processo.
Resumo:
Il presente lavoro è stato svolto nell'ambito della collaborazione NUCLEX, esperimento della Commissione Nazionale 3 dell'INFN per lo studio della dinamica delle reazioni nucleari indotte da ioni pesanti. In particolare l'oggetto della tesi riguarda l'analisi del decadimento di un nucleo di Carbonio-12 eccitato in seguito ad una reazione nucleare. Più precisamente in questa tesi si studia il decadimento di un nucleo di Carbonio-12 che, interagendo con un altro nucleo di Carbonio-12, si eccita lasciando il bersaglio di Carbonio nello stato fondamentale. La reazione studiata è 12C + 12C a 95 MeV. L'analisi è stata effettuata selezionando, fra tutti gli eventi, quelli che hanno 3 particelle α nello stato finale. Ciò permette di mettere in evidenza alcuni stati eccitati del Carbonio-12, fra cui il cosiddetto stato di Hoyle, importante soprattutto per gli aspetti astrofisici. In particolare il modo di decadimento è legato alla probabilità di formazione, che è un punto importante nella formazione degli elementi nelle stelle. E' importante infatti poter determinare se il processo di decadimento è istantaneo, cioè il Carbonio emette tre particelle α contemporaneamente, oppure sequenziale, cioè il Carbonio emette in primo luogo una particella α ed un nucleo di Berillio-8, il quale a sua volta decade in due particelle α. Nel Capitolo 1 si introdurrà l'aspetto teorico e fenomenologico del problema, verranno descritte in breve le reazioni nucleari tra ioni pesanti con un approfondimento sui processi di decadimento del Carbonio eccitato. Nel Capitolo 2 saranno descritti gli apparati utilizzati per le misure: in particolare l'apparato GARFIELD utilizzato per la rivelazione delle particelle cariche emesse nel decadimento, ed il rivelatore Ring Counter (RCo) utilizzato soprattutto per la rivelazione delle particelle α di decadimento del proiettile eccitato. Si accenna anche alle tecniche usate per identificare le particelle α. Nel Capitolo 3 verrà descritta l'analisi dei dati effettuata ed in particolare verranno mostrati gli osservabili per poter discriminare il meccanismo di decadimento sequenziale o democratico. Verranno infine tracciate alcune conclusioni in base ai risultati raggiunti.
Resumo:
La nucleosintesi primordiale descrive le reazioni che hanno formato i primi elementi leggeri (H, 2H, 3He, 4He, 7Li) e ci da una previsione sull'andamento delle loro abbondanze primordiali in funzione del rapporto barioni-fotoni η, unico parametro libero della teoria BBN. Questo parametro è stato fissato dal momento in cui la sonda WMAP è stata lanciata in orbita; essa ha svolto misure importantissime sulla radiazione cosmica di fondo, fornendoci un valore accurato della densità barionica e quindi di η. Con questo nuovo dato sono state calcolate le abbondanze degli elementi leggeri ai tempi della nucleosintesi primordiale, tuttavia quella teorizzata per il 7Li non corrispondeva affatto a quella osservata nelle stelle dell'alone galattico, ma risultava essere dalle 2 alle 4 volte maggiore. Questa discrepanza costituisce il problema cosmologico del litio. Il problema può essere affrontato in diversi campi della fisica; il nostro scopo è quello di studiarlo dal punto di vista della fisica nucleare, analizzando le reazioni nucleari legate al 7Li. Il contributo principale alla produzione di 7Li proviene dal decadimento spontaneo del 7Be, quindi bisogna valutare il rate di reazione dei processi che producono o distruggono quest'ultimo nucleo; tale rate dipende dalla sezione d'urto della reazione. Un contributo fondamentale potrebbe essere dato dalle eventuali risonanze non ancora scoperte, cioè gli stati eccitati dei prodotti di reazione che si trovano ad energie non ancora studiate, in corrispondenza delle quali la sezione d'urto subisce un drastico aumento. Le due reazioni principali da considerare sono 7Be(n,p)7Li e 7Be(n,αlfa)4He; la prima perché contribuisce al 97% della distruzione del berillio, quindi una rivalutazione della sua sezione d'urto porterebbe ad un grande cambiamento nel valore dell'abbondanza di 7Be (e quindi di 7Li), la seconda poiché, anche se contribuisce solo al 2.5% della distruzione del berillio, possiede una incertezza enorme.
Resumo:
Le reazioni termo-nucleari sono un particolare tipo di reazioni nucleari che avvengono nelle stelle e che ne assicurano il rifornimento energetico. Esse sono la principale fonte di energia nelle stelle, in quanto la fusione di elementi leggeri (in particolare fino al ferro) risulta essere esotermica. La fusione di elementi leggeri produce elementi più pesanti, a partire dalla fusione dell'idrogeno, che produce elio, fino alla fusione del silicio, che produce nichel. Solamente le stelle con massa maggiore di 8 masse solari, tuttavia, hanno massa necessaria a raggiungere la combustione del silicio. Le stelle meno massive sono destinate ad arrestarsi alla fusione di elementi più leggeri e a diventare delle nane bianche. Oltre alla fusione di elementi leggeri, esistono altre reazioni negli interni stellari in grado di fornire energia e formare nuovi elementi. Esse sopraggingono in larga parte nelle fasi finali della vita di una stella, quando le temperature all'interno dei nuclei stellari sono particolarmente elevate. Ne sono un esempio le catture alfa, le catture neutroniche e la fotodisintegrazione. L'insieme delle reazioni termo-nucleari che avvengono nel corso della vita di una stella permettono la creazioni di nuovi elementi, che vengono poi riemessi nel mezzo interstellare tramite esplosioni di supernova e fungono da materiale fondante per la nascita di nuove stelle. Nella seguente tesi verranno affrontate le principali reazioni termo-nucleari che avvengono negli interni stellari, dalla fusione di elementi leggeri fino alle fasi finali della vita di una stella.
Resumo:
Questa tesi è incentrata sullo studio e la determinazione del flusso neutronico della facility nTOF (neutron Time Of Flight) del CERN di Ginevra nel corso della campagna sperimentale del 2016. L'esperimento è finalizzato alla misura della sezione d'urto della reazione di cattura neutronica da parte degli isotopi dispari di gadolinio, 155Gd e 157Gd. In particolare l'analisi verrà condotta in modo da ottenere dati sperimentali nello spettro di energie da neutroni termici (10-2 eV) a 1.0 eV e migliorare i dati già esistenti per energie fino a 1.0 MeV. Dopo aver ricordato le motivazioni scientifiche e tecnologiche che sono alla base del progetto di ricerca, si descrivono le caratteristiche della facility nTOF e si trattano i fondamenti delle reazioni nucleari e le tecniche del tempo di volo, di misura di flusso e di cattura utilizzate nel corso dell'esperimento. Nella parte finale del lavoro si presentano i dati sperimentali acquisiti sul flusso neutronico, la cui accurata conoscenza è fondamentale per la misura di sezioni d'urto di reazioni indotte da neutroni. I risultati ottenuti sono quindi stati elaborati e confrontati con i dati precedenti per poter essere validati e per poter verificare eventuali discrepanze. Dalle analisi dei dati si deduce come la precisione ottenuta sulla determinazione del flusso sia ottimale per i successivi studi che verranno condotti sulla sezione d'urto degli isotopi dispari di gadolinio.
Resumo:
La disintegrazione dei nuclei atomici si traduce in una emissione di vari tipi di radiazioni e particelle tra cui neutroni e raggi gamma. La rivelazione dei neutroni comporta l’utilizzo di rivelatori a scintillazione e tecniche di analisi per poter identificare e ottenere informazioni sull’energia dei neutroni. Il processo di scintillazione per la rivelazione dei neutroni consiste nell’interazione con i nuclei del materiale e successiva emissione luminosa dovuta a ionizzazione degli atomi del rivelatore. La luce e in seguito convertita in impulsi elettrici, i quali possono essere analizzati con opportune tecniche. L’emissione di neutroni `e accompagnata da emissione di raggi gamma e quindi `e necessario identificare i neutroni. Rivelatori basati su scintillatori organici vengono spesso impiegati nella spettrometria neutronica ad energie superiori di 0.5 MeV ed in una vasta gamma di applicazioni come la medicina, l’industria e la radioprotezione. La rilevazione dei neutroni `e molto importante nello studio delle reazioni nucleari di bassa energia e nello studio della materia nucleare lontano dalla valle di stabilita. In questo lavoro abbiamo studiato tre algoritmi: Zero Crossing, Charge Comparison e Pulse Gradient Analysis. Questi algoritmi sono stati in seguito applicati all’analisi di un insieme di dati provenienti dalla reazione nucleare 7Li(p,n)7Be. E stato utilizzato uno scintillatore organico liquido BC501. Si `e effettuato un confronto tra le varie tecniche utilizzate per determinare il grado di discriminazione ottenuto con ognuna di esse. I risultati ottenuti permettono di decidere in seguito quale algoritmo si presta ad essere utilizzato anche in altri esperimenti futuri. Il metodo Pulse Gradient Analysis `e risultato il piu` prometente, essendo anche possibile l’utilizzo on-line.
Resumo:
Lo scopo di questo elaborato è descrivere alcuni dei meccanismi di produzione dell’energia studiati nel campo astrofisico. Essendo questi piuttosto numerosi, sono stati trascurati i processi ritenuti di sola conversione di energia da una forma ad un’altra, come, per esempio,l’emissione da parte di una particella accelerata. In questo modo si è potuto dedicare più spazio ad altri fenomeni, molto comuni ed efficienti, che saranno qui anticipatamente elencati. Nel Capitolo 1 vengono descritti i processi di fusione nucleare che alimentano le stelle; per ognuno sono state riportate la quantità di energia prodotta e i tempi scala. Si è scelto inoltre di dare maggiore importanza a quei fenomeni che caratterizzano le fasi principali dell’evoluzione stellare, essendo questi anche i più efficienti, mentre le reazioni secondarie sono state solamente accennate. Nella Sezione 1.4 vengono descritti i meccanismi alla base dell’esplosione di supernova, essendo un’importante fase evolutiva nella quale la quantità di energia in gioco è considerevole. Come conclusione dell’argomento vengono riportare le equazioni che descrivono la produzione energetica nei processi di fusione descritti precedentemente. Nella seconda parte dell’elaborato, viene descritto il fenomeno dell’accrescimento gravitazionale utilizzando come oggetto compatto di riferimento un buco nero. Si è scelto di porre l’accento sull’efficienza della produzione energetica e sul limite di luminosità di Eddington.
Resumo:
In questa tesi si è studiato uno dei principali processi nelle stelle responsabili della nucleosintesi degli elementi pesanti dopo il 56Fe, il processo-s. In particolare sono state illustrate le sorgenti di neutroni che alimentano questo processo e si è analizzata la reazione 22Ne (α,n) 25Mg. Per costruire un valido modello matematico di questo processo è necessario conoscere in maniera accurata il reaction rate di questa reazione. Conseguentemente è necessario conoscere la sezione d'urto di tale reazione in maniera molto accurata. Sono stati condotti diversi esperimenti nel tentativo di valutare la sezione d'urto per via diretta, facendo collidere un fascio di particelle α su un campione di 22Ne. Queste rilevazioni hanno dato esiti non soddisfacenti nell'intervallo di energie riguardanti il processo-s, in quanto, a causa di disturbi dovuti al fondo di raggi cosmici e alla barriera Coulombiana, non è stato possibile osservare risonanze per valori di energie delle particelle α minori di (832± 2) keV. Per colmare la mancanza di dati sperimentali si è deciso di studiare gli stati eccitati del nucleo composto 26Mg tramite la reazione inversa 25Mg+n alle facility n_TOF, situata al CERN, e GELINA al IRMM. Le misure effettuate hanno mostrato diverse risonanze al di sotto di (832±2) keV, compatibili con le spin-parità di 22Ne e α. In seguito è stato stimato il loro contributo al reaction rate e i risultati hanno mostrato che per temperature tipiche di stelle massive il contributo di queste risonanze è trascurabile ma risulta di grande rilevanza alle temperature tipiche delle stelle appartenenti al ramo asintotico delle giganti (AGB).
Resumo:
I neutroni possono essere classificati in base all'energia e per anni lo studio sui neutroni si è focalizzato verso le basse energie, ottenendo informazioni fondamentali sulle reazioni nucleari. Lo studio per i neutroni ad alta energia (E >20 MeV) ha ultimamente suscitato un vivo interesse, poiché i neutroni hanno un ruolo fondamentale in una vasta gamma di applicazioni: in campo medico, industriale e di radioprotezione. Tuttavia le informazioni sperimentali (sezioni d'urto) in nostro possesso, in funzione dell'energia dei neutroni, sono limitate, considerando che richiedono la produzione di fasci con un ampio spettro energetico e delle tecniche di rivelazione conforme ad essi. La rivelazione dei neutroni avviene spesso attraverso il processo di scintillazione che consiste nell'eccitazione e diseccitazione delle molecole che costituiscono il rivelatore. Successivamente, attraverso i fotomoltiplicatori, la luce prodotta viene raccolta e convertita in impulsi energetici che vengono registrati ed analizzati. Lo scopo di questa tesi è quello di testare quale sia la migliore configurazione sperimentale di un rivelatore costituito da scintillatori e fotomoltiplicatori per quanto riguarda la raccolta di luce, utilizzando una simulazione Monte Carlo per riprodurre le proprietà ottiche di un rivelatore per misure di flusso di un rivelatore ad alta energia.
Resumo:
La presente tesi di laurea tratta, come suggerisce il titolo, dei più importanti fenomeni termo-nucleari che caratterizzano i corpi celesti noti come ''stelle''. Dopo un breve excursus su cosa esse siano, con particolare riferimento ai maggiori costituenti, alle forze in gioco e a come si formano, verranno enunciate ed analizzate le reazioni interne dominanti, nello specifico la celebre protone-protone, coi suoi canali ''pp-I'', ''pp-II'' e ''pp-III'', ed il ciclo ''CNO'', primario e secondario, per quanto riguarda la sequenza principale; in seguito, saranno esposti i processi di maggior rilevanza che accompagnano gli stadi evolutivi più avanzati, come il ''3-alfa'', le ''catture alfa'' e nucleosintesi successive, focalizzando l'attenzione su quel che riguarda le ''catture neutroniche''. Chiudono l'elaborato alcuni cenni conclusivi, ancora sulle stelle e sui loro prodotti.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Tese de Doutoramento em Ciências da Saúde