938 resultados para reaction-controlled phase-transfer catalyst


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epoxidation of styrene catalyzed by a reaction-controlled phase transfer catalyst [(C18H37(30%)+C16H33(70%))N(CH3)(3))(3)](3)-[PW4O16] with H2O2 in a biphasic medium was investigated. Under certain conditions, the selectivity for styrene oxide was 95%, the conversion of styrene based on H2O2 was 85%, and the reaction time was less than 1 h. During the reaction, this catalyst powder formed soluble active species by the action of H2O2, was recovered as a precipitate, and was reused after H2O2 was used up. After two times recycling, the catalyst kept almost the same activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleophilic reaction of NaCN with the acetyl derivative of Baylis-Hillman adducts in the presence of a phase-transfer catalyst in aqueous medium stereoselectively affords the corresponding allyl cyanides in a short period and excellent yields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new quaternary ammonium heteropolyoxotungstant (cat.C) is prepared and characterized. And the cat.C also is an reaction-controlled phase-transfer catalyst. The catalytic system of O-2/EAHQ (2-ethylanthrahydroquinone)/cat.c is used for the epoxidation of propylene. Under the optimal conditions, the yield of propylene oxide based on EAHQ is 84.1%, the selectivity for propylene oxide based on propylene is 99.8% and the conversion of propylene based on EAHQ is 84.3%. The cat.c precipitates after the epoxidation reaction for easy separation. The cat. C is stable enough to be recycled three times without any loss in selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crown ethers have the ability of solubilizing inorganic salts in apolar solvents and to promote chemical reactions by phase-transfer catalysis. However, details on how crown ethers catalyze ionic S(N)2 reactions and control selectivity are not well understood. In this work, we have used high level theoretical calculations to shed light on the details of phase-transfer catalysis mechanism of KF reaction with alkyl halides promoted by 18-crown-6. A complete analysis of the of the model reaction between KF(18-crown-6) and ethyl bromide reveals that the calculations can accurately predict the product ratio and the overall kinetics. Our results point out the importance of the K* ion and of the crown ether ring in determining product selectivity. While the K* ion favors the S(N)2 over the E2 anti pathway, the crown ether ring favors the S(N)2 over E2 syn route. The combination effects lead to a predicted 94% for the S(N)2 pathway in excellent agreement with the experimental value of 92%. A detailed analysis of the overall mechanism of the reaction under phase-transfer conditions also reveals that the KBr product generated in the nucleophilic fluorination acts as an inhibitor of the 18-crown-6 catalyst and it is responsible for the observed slow reaction rate. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-phase Brust-Schiffrin method (BSM) is used to synthesize highly stable nanoparticles of noble metals. A phase transfer catalyst (PTC) is used to bring in aqueous phase soluble precursors into the organic phase to enable particle synthesis there. Two different mechanisms for phase transfer are advanced in the literature. The first mechanism considers PTC to bring in an aqueous phase soluble precursor by complexing with it. The second mechanism considers the ionic species to be contained in inverse micelles of PTC, with a water core inside. A comprehensive experimental study involving measurement of interfacial tension, viscosity, water content by Karl-Fischer titration, static light scattering, H-1 NMR, and small-angle X-ray scattering is reported in this work to establish that the phase transfer catalyst tetraoctylammonium bromide transfers ions by complexing with them, instead of encapsulating them in inverse micelles. The findings have implications for particle synthesis in two-phase methods such as BSM and their modification to produce more monodispersed particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of commercially useful substituted pyridyl ureas have been synthesized via selenium dioxide-catalyzed reductive carbortylation of substituted nitrobenzene or substituted nitropyridine with amine as co-reagent and carbon monoxide as carbonyl reagent instead of phosgene in one-pot reaction. The recycling reusability of catalyst was also tested. It was also found that selenium dioxide-catalyzed reductive carbonylation of nitroaromatics exhibited reaction-controlled phase-transfer phenomena of the catalyst. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of phase transfer catalysts such as 18-crown-6 enables ionic, linear conjugated poly[2,6-{1,5-bis(3-propoxysulfonicacidsodiumsalt)}naphthylene]ethynylene (PNES) to efficiently disperse single-walled carbon nanotubes (SWNTs) in multiple organic solvents under standard ultrasonication methods. Steady-state electronic absorption spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) reveal that these SWNT suspensions are composed almost exclusively of individualized tubes. High-resolution TEM and AFM data show that the interaction of PNES with SWNTs in both protic and aprotic organic solvents provides a self-assembled superstructure in which a PNES monolayer helically wraps the nanotube surface with periodic and constant morphology (observed helical pitch length = 10 ± 2 nm); time-dependent examination of these suspensions indicates that these structures persist in solution over periods that span at least several months. Pump-probe transient absorption spectroscopy reveals that the excited state lifetimes and exciton binding energies of these well-defined nanotube-semiconducting polymer hybrid structures remain unchanged relative to analogous benchmark data acquired previously for standard sodium dodecylsulfate (SDS)-SWNT suspensions, regardless of solvent. These results demonstrate that the use of phase transfer catalysts with ionic semiconducting polymers that helically wrap SWNTs provide well-defined structures that solubulize SWNTs in a wide range of organic solvents while preserving critical nanotube semiconducting and conducting properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first example of an intramolecular enantioselective Michael addition of nitronates onto conjugated systems utilizing a chiral phase-transfer catalyst is described. A range of five-membered gamma-nitro esters with up to three stereocentres have been prepared and the relative and absolute configurations proven by chemical and crystallographic methods. The products are rapidly obtained and are precursors to five-membered cyclic gamma-amino acids.