976 resultados para rational fraction polynomials
Resumo:
This paper presents a model designed to study vertical interactions between wheel and rail when the wheel moves over a rail welding. The model focuses on the spatial domain, and is drawn up in a simple fashion from track receptances. The paper obtains the receptances from a full track model in the frequency domain already developed by the authors, which includes deformation of the rail section and propagation of bending, elongation and torsional waves along an infinite track. Transformation between domains was secured by applying a modified rational fraction polynomials method. This obtains a track model with very few degrees of freedom, and thus with minimum time consumption for integration, with a good match to the original model over a sufficiently broad range of frequencies. Wheel-rail interaction is modelled on a non-linear Hertzian spring, and consideration is given to parametric excitation caused by the wheel moving over a sleeper, since this is a moving wheel model and not a moving irregularity model. The model is used to study the dynamic loads and displacements emerging at the wheel-rail contact passing over a welding defect at different speeds.
Resumo:
This study addresses the optimization of rational fraction approximations for the discrete-time calculation of fractional derivatives. The article starts by analyzing the standard techniques based on Taylor series and Padé expansions. In a second phase the paper re-evaluates the problem in an optimization perspective by tacking advantage of the flexibility of the genetic algorithms.
Resumo:
The trend in modal extraction algorithms is to use all the available frequency response functions data to obtain a global estimate of the natural frequencies, damping ratio and mode shapes. Improvements in transducer and signal processing technology allow the simultaneous measurement of many hundreds of channels of response data. The quantity of data available and the complexity of the extraction algorithms make considerable demands on the available computer power and require a powerful computer or dedicated workstation to perform satisfactorily. An alternative to waiting for faster sequential processors is to implement the algorithm in parallel, for example on a network of Transputers. Parallel architectures are a cost effective means of increasing computational power, and a larger number of response channels would simply require more processors. This thesis considers how two typical modal extraction algorithms, the Rational Fraction Polynomial method and the Ibrahim Time Domain method, may be implemented on a network of transputers. The Rational Fraction Polynomial Method is a well known and robust frequency domain 'curve fitting' algorithm. The Ibrahim Time Domain method is an efficient algorithm that 'curve fits' in the time domain. This thesis reviews the algorithms, considers the problems involved in a parallel implementation, and shows how they were implemented on a real Transputer network.
Resumo:
Let f(x) be a complex rational function. In this work, we study conditions under which f(x) cannot be written as the composition of two rational functions which are not units under the operation of function composition. In this case, we say that f(x) is prime. We give sufficient conditions for complex rational functions to be prime in terms of their degrees and their critical values, and we derive some conditions for the case of complex polynomials. We consider also the divisibility of integral polynomials, and we present a generalization of a theorem of Nieto. We show that if f(x) and g(x) are integral polynomials such that the content of g divides the content of f and g(n) divides f(n) for an integer n whose absolute value is larger than a certain bound, then g(x) divides f(x) in Z[x]. In addition, given an integral polynomial f(x), we provide a method to determine if f is irreducible over Z, and if not, find one of its divisors in Z[x].
Resumo:
We prove that the zeros of the polynomials P.. (a) of degree m, defined by Boros and Moll via[GRAPHICS]approach the lemmiscate {zeta epsilon C: \zeta(2) - 1\ = Hzeta < 0}, as m --> infinity. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.
Resumo:
High-speed videokeratoscopy is an emerging technique that enables study of the corneal surface and tear-film dynamics. Unlike its static predecessor, this new technique results in a very large amount of digital data for which storage needs become significant. We aimed to design a compression technique that would use mathematical functions to parsimoniously fit corneal surface data with a minimum number of coefficients. Since the Zernike polynomial functions that have been traditionally used for modeling corneal surfaces may not necessarily correctly represent given corneal surface data in terms of its optical performance, we introduced the concept of Zernike polynomial-based rational functions. Modeling optimality criteria were employed in terms of both the rms surface error as well as the point spread function cross-correlation. The parameters of approximations were estimated using a nonlinear least-squares procedure based on the Levenberg-Marquardt algorithm. A large number of retrospective videokeratoscopic measurements were used to evaluate the performance of the proposed rational-function-based modeling approach. The results indicate that the rational functions almost always outperform the traditional Zernike polynomial approximations with the same number of coefficients.
Fractional derivatives: probability interpretation and frequency response of rational approximations
Resumo:
The theory of fractional calculus (FC) is a useful mathematical tool in many applied sciences. Nevertheless, only in the last decades researchers were motivated for the adoption of the FC concepts. There are several reasons for this state of affairs, namely the co-existence of different definitions and interpretations, and the necessity of approximation methods for the real time calculation of fractional derivatives (FDs). In a first part, this paper introduces a probabilistic interpretation of the fractional derivative based on the Grünwald-Letnikov definition. In a second part, the calculation of fractional derivatives through Padé fraction approximations is analyzed. It is observed that the probabilistic interpretation and the frequency response of fraction approximations of FDs reveal a clear correlation between both concepts.
Asymptotics for Jacobi-Sobolev orthogonal polynomials associated with non-coherent pairs of measures
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The mathematical underpinning of the pulse width modulation (PWM) technique lies in the attempt to represent “accurately” harmonic waveforms using only square forms of a fixed height. The accuracy can be measured using many norms, but the quality of the approximation of the analog signal (a harmonic form) by a digital one (simple pulses of a fixed high voltage level) requires the elimination of high order harmonics in the error term. The most important practical problem is in “accurate” reproduction of sine-wave using the same number of pulses as the number of high harmonics eliminated. We describe in this paper a complete solution of the PWM problem using Padé approximations, orthogonal polynomials, and solitons. The main result of the paper is the characterization of discrete pulses answering the general PWM problem in terms of the manifold of all rational solutions to Korteweg-de Vries equations.
Resumo:
We outline here a proof that a certain rational function Cn(q, t), which has come to be known as the “q, t-Catalan,” is in fact a polynomial with positive integer coefficients. This has been an open problem since 1994. Because Cn(q, t) evaluates to the Catalan number at t = q = 1, it has also been an open problem to find a pair of statistics a, b on the collection
Resumo:
We investigate infinite families of integral quadratic polynomials {fk (X)} k∈N and show that, for a fixed k ∈ N and arbitrary X ∈ N, the period length of the simple continued fraction expansion of √fk (X) is constant. Furthermore, we show that the period lengths of √fk (X) go to infinity with k. For each member of the families involved, we show how to determine, in an easy fashion, the fundamental unit of the underlying quadratic field. We also demonstrate how the simple continued fraction ex- pansion of √fk (X) is related to that of √C, where √fk (X) = ak*X^2 +bk*X + C. This continues work in [1]–[4].
Resumo:
2000 Mathematics Subject Classification: 14N10, 14C17.