925 resultados para random walks transportation network dynamical systems stationary distribution Markovv processes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we dealt with the problem of describing a transportation network in which the objects in movement were subject to both finite transportation capacity and finite accomodation capacity. The movements across such a system are realistically of a simultaneous nature which poses some challenges when formulating a mathematical description. We tried to derive such a general modellization from one posed on a simplified problem based on asyncronicity in particle transitions. We did so considering one-step processes based on the assumption that the system could be describable through discrete time Markov processes with finite state space. After describing the pre-established dynamics in terms of master equations we determined stationary states for the considered processes. Numerical simulations then led to the conclusion that a general system naturally evolves toward a congestion state when its particle transition simultaneously and we consider one single constraint in the form of network node capacity. Moreover the congested nodes of a system tend to be located in adjacent spots in the network, thus forming local clusters of congested nodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the probability density function of the energy of a random dynamical system subjected to harmonic excitation. It is shown that if the natural frequencies and mode shapes of the system conform to the Gaussian Orthogonal Ensemble, then under common types of loading the distribution of the energy of the response is approximately lognormal, providing the modal overlap factor is high (typically greater than two). In contrast, it is shown that the response of a system with Poisson natural frequencies is not approximately lognormal. Numerical simulations are conducted on a plate system to validate the theoretical findings and good agreement is obtained. Simulations are also conducted on a system made from two plates connected with rotational springs to demonstrate that the theoretical findings can be extended to a built-up system. The work provides a theoretical justification of the commonly used empirical practice of assuming that the energy response of a random system is lognormal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of estimating the time-dependent statistical characteristics of a random dynamical system is studied under two different settings. In the first, the system dynamics is governed by a differential equation parameterized by a random parameter, while in the second, this is governed by a differential equation with an underlying parameter sequence characterized by a continuous time Markov chain. We propose, for the first time in the literature, stochastic approximation algorithms for estimating various time-dependent process characteristics of the system. In particular, we provide efficient estimators for quantities such as the mean, variance and distribution of the process at any given time as well as the joint distribution and the autocorrelation coefficient at different times. A novel aspect of our approach is that we assume that information on the parameter model (i.e., its distribution in the first case and transition probabilities of the Markov chain in the second) is not available in either case. This is unlike most other work in the literature that assumes availability of such information. Also, most of the prior work in the literature is geared towards analyzing the steady-state system behavior of the random dynamical system while our focus is on analyzing the time-dependent statistical characteristics which are in general difficult to obtain. We prove the almost sure convergence of our stochastic approximation scheme in each case to the true value of the quantity being estimated. We provide a general class of strongly consistent estimators for the aforementioned statistical quantities with regular sample average estimators being a specific instance of these. We also present an application of the proposed scheme on a widely used model in population biology. Numerical experiments in this framework show that the time-dependent process characteristics as obtained using our algorithm in each case exhibit excellent agreement with exact results. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usefulness of the application of heuristic algorithms in the transportation model, first proposed by Garver, is analysed in relation to planning for the expansion of transmission systems. The formulation of the mathematical model and the solution techniques proposed in the specialised literature are analysed in detail. Starting with the constructive heuristic algorithm proposed by Garver, an extension is made to the problem of multistage planning for transmission systems. The quality of the solutions found by heuristic algorithms for the transportation model is analysed, as are applications in problems of planning transmission systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the probability distribution of the angle by which the tangent to the trajectory rotates in the course of a plane random walk. It is shown that the determination of this distribution function can be reduced to an integral equation, which can be rigorously transformed into a differential equation of Hill's type. We derive the asymptotic distribution for very long walks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov's transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov’s transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conceptual model is described for generating distributions of grazing animals, according to their searching behavior, to investigate the mechanisms animals may use to achieve their distributions. The model simulates behaviors ranging from random diffusion, through taxis and cognitively aided navigation (i.e., using memory), to the optimization extreme of the Ideal Free Distribution. These behaviors are generated from simulation of biased diffusion that operates at multiple scales simultaneously, formalizing ideas of multiple-scale foraging behavior. It uses probabilistic bias to represent decisions, allowing multiple search goals to be combined (e.g., foraging and social goals) and the representation of suboptimal behavior. By allowing bias to arise at multiple scales within the environment, each weighted relative to the others, the model can represent different scales of simultaneous decision-making and scale-dependent behavior. The model also allows different constraints to be applied to the animal's ability (e.g., applying food-patch accessibility and information limits). Simulations show that foraging-decision randomness and spatial scale of decision bias have potentially profound effects on both animal intake rate and the distribution of resources in the environment. Spatial variograms show that foraging strategies can differentially change the spatial pattern of resource abundance in the environment to one characteristic of the foraging strategy.</

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study random walks systems on Z whose general description follows. At time zero, there is a number N >= 1 of particles at each vertex of N, all being inactive, except for those placed at the vertex one. Each active particle performs a simple random walk on Z and, up to the time it dies, it activates all inactive particles that it meets along its way. An active particle dies at the instant it reaches a certain fixed total of jumps (L >= 1) without activating any particle, so that its lifetime depends strongly on the past of the process. We investigate how the probability of survival of the process depends on L and on the jumping probabilities of the active particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a random walks system on Z in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on Z, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to I but not fast enough.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose distributed algorithms for sampling networks based on a new class of random walks that we call Centrifugal Random Walks (CRW). A CRW is a random walk that starts at a source and always moves away from it. We propose CRW algorithms for connected networks with arbitrary probability distributions, and for grids and networks with regular concentric connectivity with distance based distributions. All CRW sampling algorithms select a node with the exact probability distribution, do not need warm-up, and end in a number of hops bounded by the network diameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An integrated approach composed of a random utility-based multiregional input-output model and a road transport network model was developed for evaluating the application of a fee to heavy-goods vehicles (HGVs) in Spain. For this purpose, a distance-based charge scenario (in euros per vehicle kilometer) for HGVs was evaluated for a selected motorway network in Spain. Although the aim of this charging policy was to increase the efficiency of transport, the approach strongly identified direct and indirect impacts on the regional economy. Estimates of the magnitude and extent of indirect effects on aggregated macroeconomic indicators (employment and gross domestic product) are provided. The macroeconomic effects of the charging policy were found to be positive for some regions and negative for other regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We suggest a model for data losses in a single node (memory buffer) of a packet-switched network (like the Internet) which reduces to one-dimensional discrete random walks with unusual boundary conditions. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that for a finite-capacity buffer at the critical point the loss rate exhibits strong fluctuations and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process.