907 resultados para random graphs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs) with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI) approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs). Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider the following problem: Forgiven graphs G and F(1),..., F(k), find a coloring of the edges of G with k colors such that G does not contain F; in color i. Rodl and Rucinski studied this problem for the random graph G,,, in the symmetric case when k is fixed and F(1) = ... = F(k) = F. They proved that such a coloring exists asymptotically almost surely (a.a.s.) provided that p <= bn(-beta) for some constants b = b(F,k) and beta = beta(F). This result is essentially best possible because for p >= Bn(-beta), where B = B(F, k) is a large constant, such an edge-coloring does not exist. Kohayakawa and Kreuter conjectured a threshold function n(-beta(F1,..., Fk)) for arbitrary F(1), ..., F(k). In this article we address the case when F(1),..., F(k) are cliques of different sizes and propose an algorithm that a.a.s. finds a valid k-edge-coloring of G(n,p) with p <= bn(-beta) for some constant b = b(F(1),..., F(k)), where beta = beta(F(1),..., F(k)) as conjectured. With a few exceptions, this algorithm also works in the general symmetric case. We also show that there exists a constant B = B(F,,..., Fk) such that for p >= Bn(-beta) the random graph G(n,p) a.a.s. does not have a valid k-edge-coloring provided the so-called KLR-conjecture holds. (C) 2008 Wiley Periodicals, Inc. Random Struct. Alg., 34, 419-453, 2009

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove that asymptotically (as n -> infinity) almost all graphs with n vertices and C(d)n(2-1/2d) log(1/d) n edges are universal with respect to the family of all graphs with maximum degree bounded by d. Moreover, we provide an efficient deterministic embedding algorithm for finding copies of bounded degree graphs in graphs satisfying certain pseudorandom properties. We also prove a counterpart result for random bipartite graphs, where the threshold number of edges is even smaller but the embedding is randomized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a variation of the graph coloring problem on random graphs of finite average connectivity. Given the number of colors, we aim to maximize the number of different colors at neighboring vertices (i.e. one edge distance) of any vertex. Two efficient algorithms, belief propagation and Walksat are adapted to carry out this task. We present experimental results based on two types of random graphs for different system sizes and identify the critical value of the connectivity for the algorithms to find a perfect solution. The problem and the suggested algorithms have practical relevance since various applications, such as distributed storage, can be mapped onto this problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a simple model that captures the salient properties of distribution networks, and study the possible occurrence of blackouts, i.e., sudden failings of large portions of such networks. The model is defined on a random graph of finite connectivity. The nodes of the graph represent hubs of the network, while the edges of the graph represent the links of the distribution network. Both, the nodes and the edges carry dynamical two state variables representing the functioning or dysfunctional state of the node or link in question. We describe a dynamical process in which the breakdown of a link or node is triggered when the level of maintenance it receives falls below a given threshold. This form of dynamics can lead to situations of catastrophic breakdown, if levels of maintenance are themselves dependent on the functioning of the net, once maintenance levels locally fall below a critical threshold due to fluctuations. We formulate conditions under which such systems can be analyzed in terms of thermodynamic equilibrium techniques, and under these conditions derive a phase diagram characterizing the collective behavior of the system, given its model parameters. The phase diagram is confirmed qualitatively and quantitatively by simulations on explicit realizations of the graph, thus confirming the validity of our approach. © 2007 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A localized method to distribute paths on random graphs is devised, aimed at finding the shortest paths between given source/destination pairs while avoiding path overlaps at nodes. We propose a method based on message-passing techniques to process global information and distribute paths optimally. Statistical properties such as scaling with system size and number of paths, average path-length and the transition to the frustrated regime are analyzed. The performance of the suggested algorithm is evaluated through a comparison against a greedy algorithm. © 2014 IOP Publishing Ltd and SISSA Medialab srl.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Geometric and structural constraints greatly restrict the selection of folds adapted by protein backbones, and yet, folded proteins show an astounding diversity in functionality. For structure to have any bearing on function, it is thus imperative that, apart from the protein backbone, other tunable degrees of freedom be accountable. Here, we focus on side-chain interactions, which non-covalently link amino acids in folded proteins to form a network structure. At a coarse-grained level, we show that the network conforms remarkably well to realizations of random graphs and displays associated percolation behavior. Thus, within the rigid framework of the protein backbone that restricts the structure space, the side-chain interactions exhibit an element of randomness, which account for the functional flexibility and diversity shown by proteins. However, at a finer level, the network exhibits deviations from these random graphs which, as we demonstrate for a few specific examples, reflect the intrinsic uniqueness in the structure and stability, and perhaps specificity in the functioning of biological proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Range and load play key roles in the problem of attacks on links in random scale-free (RSF) networks. In this paper we obtain the approximate relation between range and load in RSF networks by the generating function theory, and then give an estimation about the impact of attacks on the efficiency of the network. The results show that short-range attacks are more destructive for RSF networks, and are confirmed numerically.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Estimation of the skeleton of a directed acyclic graph (DAG) is of great importance for understanding the underlying DAG and causal effects can be assessed from the skeleton when the DAG is not identifiable. We propose a novel method named PenPC to estimate the skeleton of a high-dimensional DAG by a two-step approach. We first estimate the nonzero entries of a concentration matrix using penalized regression, and then fix the difference between the concentration matrix and the skeleton by evaluating a set of conditional independence hypotheses. For high-dimensional problems where the number of vertices p is in polynomial or exponential scale of sample size n, we study the asymptotic property of PenPC on two types of graphs: traditional random graphs where all the vertices have the same expected number of neighbors, and scale-free graphs where a few vertices may have a large number of neighbors. As illustrated by extensive simulations and applications on gene expression data of cancer patients, PenPC has higher sensitivity and specificity than the state-of-the-art method, the PC-stable algorithm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we present AGWAN (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the AGWAN model to real-world graphs and for generating random graphs from the model. Using the Enron “who communicates with whom” social graph, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to the structure of real-world graphs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we presentAgwan (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the Agwanmodel to real-world graphs and for generating random graphs from the model. Using real-world directed and undirected graphs as input, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to graph structure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis we are going to analyze the dictionary graphs and some other kinds of graphs using the PagerRank algorithm. We calculated the correlation between the degree and PageRank of all nodes for a graph obtained from Merriam-Webster dictionary, a French dictionary and WordNet hypernym and synonym dictionaries. Our conclusion was that PageRank can be a good tool to compare the quality of dictionaries. We studied some artificial social and random graphs. We found that when we omitted some random nodes from each of the graphs, we have not noticed any significant changes in the ranking of the nodes according to their PageRank. We also discovered that some social graphs selected for our study were less resistant to the changes of PageRank.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Applications such as neuroscience, telecommunication, online social networking, transport and retail trading give rise to connectivity patterns that change over time. In this work, we address the resulting need for network models and computational algorithms that deal with dynamic links. We introduce a new class of evolving range-dependent random graphs that gives a tractable framework for modelling and simulation. We develop a spectral algorithm for calibrating a set of edge ranges from a sequence of network snapshots and give a proof of principle illustration on some neuroscience data. We also show how the model can be used computationally and analytically to investigate the scenario where an evolutionary process, such as an epidemic, takes place on an evolving network. This allows us to study the cumulative effect of two distinct types of dynamics.