975 resultados para rainfall-runoff modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Runoff generation processes and pathways vary widely between catchments. Credible simulations of solute and pollutant transport in surface waters are dependent on models which facilitate appropriate, catchment-specific representations of perceptual models of the runoff generation process. Here, we present a flexible, semi-distributed landscape-scale rainfall-runoff modelling toolkit suitable for simulating a broad range of user-specified perceptual models of runoff generation and stream flow occurring in different climatic regions and landscape types. PERSiST (the Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport) is designed for simulating present-day hydrology; projecting possible future effects of climate or land use change on runoff and catchment water storage; and generating hydrologic inputs for the Integrated Catchments (INCA) family of models. PERSiST has limited data requirements and is calibrated using observed time series of precipitation, air temperature and runoff at one or more points in a river network. Here, we apply PERSiST to the river Thames in the UK and describe a Monte Carlo tool for model calibration, sensitivity and uncertainty analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the application of an improved particle swarm optimization (PSO) technique for training an artificial neural network (ANN) to predict water levels for the Heshui watershed, China. Daily values of rainfall and water levels from 1988 to 2000 were first analyzed using ANNs trained with the conjugate-gradient, gradient descent and Levenberg-Marquardt neural network (LM-NN) algorithms. The best results were obtained from LM-NN and these results were then compared with those from PSO-based ANNs, including conventional PSO neural network (CPSONN) and improved PSO neural network (IPSONN) with passive congregation. The IPSONN algorithm improves PSO convergence by using the selfish herd concept in swarm behavior. Our results show that the PSO-based ANNs performed better than LM-NN. For models run using a single parameter (rainfall) as input, the root mean square error (RMSE) of the testing dataset for IPSONN was the lowest (0.152 m) compared to those for CPSONN (0.161 m) and LM-NN (0.205 m). For multi-parameter (rainfall and water level) inputs, the RMSE of the testing dataset for IPSONN was also the lowest (0.089 m) compared to those for CPSONN (0.105 m) and LM-NN (0.145 m). The results also indicate that the LM-NN model performed poorly in predicting the low and peak water levels, in comparison to the PSO-based ANNs. Moreover, the IPSONN model was superior to CPSONN in predicting extreme water levels. Lastly, IPSONN had a quicker convergence rate compared to CPSONN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) is a Takagi-Sugeno-type fuzzy inference system for online learning which can be applied for dynamic time series prediction. To the best of our knowledge, this is the first time that DENFIS has been used for rainfall-runoff (R-R) modeling. DENFIS model results were compared to the results obtained from the physically-based Storm Water Management Model (SWMM) and an Adaptive Network-based Fuzzy Inference System (ANFIS) which employs offline learning. Data from a small (5.6 km2) catchment in Singapore, comprising 11 separated storm events were analyzed. Rainfall was the only input used for the DENFIS and ANFIS models and the output was discharge at the present time. It is concluded that DENFIS results are better or at least comparable to SWMM, but similar to ANFIS. These results indicate a strong potential for DENFIS to be used in R-R modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the simulation of flood risks originating from the overtopping of river banks is well covered within continuously evaluated programs to improve flood protection measures, flash flooding is not. Flash floods are triggered by short, local thunderstorm cells with high precipitation intensities. Small catchments have short response times and flow paths and convective thunder cells may result in potential flooding of endangered settlements. Assessing local flooding and pathways of flood requires a detailed hydraulic simulation of the surface runoff. Hydrological models usually do not incorporate surface runoff at this detailedness but rather empirical equations are applied for runoff detention. In return 2D hydrodynamic models usually do not allow distributed rainfall as input nor are any types of soil/surface interaction implemented as in hydrological models. Considering several cases of local flash flooding during the last years the issue emerged for practical reasons but as well as research topics to closing the model gap between distributed rainfall and distributed runoff formation. Therefore, a 2D hydrodynamic model, depth-averaged flow equations using the finite volume discretization, was extended to accept direct rainfall enabling to simulate the associated runoff formation. The model itself is used as numerical engine, rainfall is introduced via the modification of waterlevels at fixed time intervals. The paper not only deals with the general application of the software, but intends to test the numerical stability and reliability of simulation results. The performed tests are made using different artificial as well as measured rainfall series as input. Key parameters of the simulation such as losses, roughness or time intervals for water level manipulations are tested regarding their impact on the stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements The authors would like to thank Jonathan Dick, Josie Geris, Jason Lessels, and Claire Tunaley for data collection and Audrey Innes for lab sample preparation. We also thank Christian Birkel for discussions about the model structure and comments on an earlier draft of the paper. Climatic data were provided by Iain Malcolm and Marine Scotland Fisheries at the Freshwater Lab, Pitlochry. Additional precipitation data were provided by the UK Meteorological Office and the British Atmospheric Data Centre (BADC).We thank the European Research Council ERC (project GA 335910 VEWA) for funding the VeWa project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled hydrology and water quality models are an important tool today, used in the understanding and management of surface water and watershed areas. Such problems are generally subject to substantial uncertainty in parameters, process understanding, and data. Component models, drawing on different data, concepts, and structures, are affected differently by each of these uncertain elements. This paper proposes a framework wherein the response of component models to their respective uncertain elements can be quantified and assessed, using a hydrological model and water quality model as two exemplars. The resulting assessments can be used to identify model coupling strategies that permit more appropriate use and calibration of individual models, and a better overall coupled model response. One key finding was that an approximate balance of water quality and hydrological model responses can be obtained using both the QUAL2E and Mike11 water quality models. The balance point, however, does not support a particularly narrow surface response (or stringent calibration criteria) with respect to the water quality calibration data, at least in the case examined here. Additionally, it is clear from the results presented that the structural source of uncertainty is at least as significant as parameter-based uncertainties in areal models. © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate parameter estimation is important for reliable rainfall-runoff modeling. Previous studies emphasize that a sufficient length of continuous events is required for model calibration to overcome the effect of initial conditions. This paper investigates the feasibility of calibrating rainfall-runoff models over a number of limited storm flow events. For a subcatchment having a moderate influence from initial soil moisture conditions, this study shows that rainfall-runoff models could still be calibrated reliably over a set of representative events provided that the events cover a wide range of peak flow, total runoff volume, and initial soil moisture conditions. This approach could provide an alternative calibration strategy for a small watershed that has a limited data length but consists of runoff events with a wide range of magnitudes. Compared to continuous-event calibration, event-based calibration appears to perform better in simulating the overall shape of hydrograph, peak flow and time to peak. However, continuous-event calibration was found to be more reliable in providing runoff volume, suggesting that continuous-event calibration should still be used when runoff volume is the main concern of a study.