903 resultados para rainfall-runoff empirical statistical model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Key Technology RD Program [2006BAD03A02]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): We describe an empirical-statistical model of climates of the southwestern United States. Boundary conditions include sea surface temperatures, atmospheric transmissivity, and topography. Independent variables are derived from the boundary conditions along 1000-km paths of atmospheric circulation. ... Predictor equations are derived over a larger region than the application area to allow for the increased range of paleoclimate. This larger region is delimited by the autocorrelation properties of climatic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the simulation of flood risks originating from the overtopping of river banks is well covered within continuously evaluated programs to improve flood protection measures, flash flooding is not. Flash floods are triggered by short, local thunderstorm cells with high precipitation intensities. Small catchments have short response times and flow paths and convective thunder cells may result in potential flooding of endangered settlements. Assessing local flooding and pathways of flood requires a detailed hydraulic simulation of the surface runoff. Hydrological models usually do not incorporate surface runoff at this detailedness but rather empirical equations are applied for runoff detention. In return 2D hydrodynamic models usually do not allow distributed rainfall as input nor are any types of soil/surface interaction implemented as in hydrological models. Considering several cases of local flash flooding during the last years the issue emerged for practical reasons but as well as research topics to closing the model gap between distributed rainfall and distributed runoff formation. Therefore, a 2D hydrodynamic model, depth-averaged flow equations using the finite volume discretization, was extended to accept direct rainfall enabling to simulate the associated runoff formation. The model itself is used as numerical engine, rainfall is introduced via the modification of waterlevels at fixed time intervals. The paper not only deals with the general application of the software, but intends to test the numerical stability and reliability of simulation results. The performed tests are made using different artificial as well as measured rainfall series as input. Key parameters of the simulation such as losses, roughness or time intervals for water level manipulations are tested regarding their impact on the stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled hydrology and water quality models are an important tool today, used in the understanding and management of surface water and watershed areas. Such problems are generally subject to substantial uncertainty in parameters, process understanding, and data. Component models, drawing on different data, concepts, and structures, are affected differently by each of these uncertain elements. This paper proposes a framework wherein the response of component models to their respective uncertain elements can be quantified and assessed, using a hydrological model and water quality model as two exemplars. The resulting assessments can be used to identify model coupling strategies that permit more appropriate use and calibration of individual models, and a better overall coupled model response. One key finding was that an approximate balance of water quality and hydrological model responses can be obtained using both the QUAL2E and Mike11 water quality models. The balance point, however, does not support a particularly narrow surface response (or stringent calibration criteria) with respect to the water quality calibration data, at least in the case examined here. Additionally, it is clear from the results presented that the structural source of uncertainty is at least as significant as parameter-based uncertainties in areal models. © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure for characterizing global uncertainty of a rainfall-runoff simulation model based on using grey numbers is presented. By using the grey numbers technique the uncertainty is characterized by an interval; once the parameters of the rainfall-runoff model have been properly defined as grey numbers, by using the grey mathematics and functions it is possible to obtain simulated discharges in the form of grey numbers whose envelope defines a band which represents the vagueness/uncertainty associated with the simulated variable. The grey numbers representing the model parameters are estimated in such a way that the band obtained from the envelope of simulated grey discharges includes an assigned percentage of observed discharge values and is at the same time as narrow as possible. The approach is applied to a real case study highlighting that a rigorous application of the procedure for direct simulation through the rainfall-runoff model with grey parameters involves long computational times. However, these times can be significantly reduced using a simplified computing procedure with minimal approximations in the quantification of the grey numbers representing the simulated discharges. Relying on this simplified procedure, the conceptual rainfall-runoff grey model is thus calibrated and the uncertainty bands obtained both downstream of the calibration process and downstream of the validation process are compared with those obtained by using a well-established approach, like the GLUE approach, for characterizing uncertainty. The results of the comparison show that the proposed approach may represent a valid tool for characterizing the global uncertainty associable with the output of a rainfall-runoff simulation model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements The authors would like to thank Jonathan Dick, Josie Geris, Jason Lessels, and Claire Tunaley for data collection and Audrey Innes for lab sample preparation. We also thank Christian Birkel for discussions about the model structure and comments on an earlier draft of the paper. Climatic data were provided by Iain Malcolm and Marine Scotland Fisheries at the Freshwater Lab, Pitlochry. Additional precipitation data were provided by the UK Meteorological Office and the British Atmospheric Data Centre (BADC).We thank the European Research Council ERC (project GA 335910 VEWA) for funding the VeWa project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Runoff generation processes and pathways vary widely between catchments. Credible simulations of solute and pollutant transport in surface waters are dependent on models which facilitate appropriate, catchment-specific representations of perceptual models of the runoff generation process. Here, we present a flexible, semi-distributed landscape-scale rainfall-runoff modelling toolkit suitable for simulating a broad range of user-specified perceptual models of runoff generation and stream flow occurring in different climatic regions and landscape types. PERSiST (the Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport) is designed for simulating present-day hydrology; projecting possible future effects of climate or land use change on runoff and catchment water storage; and generating hydrologic inputs for the Integrated Catchments (INCA) family of models. PERSiST has limited data requirements and is calibrated using observed time series of precipitation, air temperature and runoff at one or more points in a river network. Here, we apply PERSiST to the river Thames in the UK and describe a Monte Carlo tool for model calibration, sensitivity and uncertainty analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) is a Takagi-Sugeno-type fuzzy inference system for online learning which can be applied for dynamic time series prediction. To the best of our knowledge, this is the first time that DENFIS has been used for rainfall-runoff (R-R) modeling. DENFIS model results were compared to the results obtained from the physically-based Storm Water Management Model (SWMM) and an Adaptive Network-based Fuzzy Inference System (ANFIS) which employs offline learning. Data from a small (5.6 km2) catchment in Singapore, comprising 11 separated storm events were analyzed. Rainfall was the only input used for the DENFIS and ANFIS models and the output was discharge at the present time. It is concluded that DENFIS results are better or at least comparable to SWMM, but similar to ANFIS. These results indicate a strong potential for DENFIS to be used in R-R modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate parameter estimation is important for reliable rainfall-runoff modeling. Previous studies emphasize that a sufficient length of continuous events is required for model calibration to overcome the effect of initial conditions. This paper investigates the feasibility of calibrating rainfall-runoff models over a number of limited storm flow events. For a subcatchment having a moderate influence from initial soil moisture conditions, this study shows that rainfall-runoff models could still be calibrated reliably over a set of representative events provided that the events cover a wide range of peak flow, total runoff volume, and initial soil moisture conditions. This approach could provide an alternative calibration strategy for a small watershed that has a limited data length but consists of runoff events with a wide range of magnitudes. Compared to continuous-event calibration, event-based calibration appears to perform better in simulating the overall shape of hydrograph, peak flow and time to peak. However, continuous-event calibration was found to be more reliable in providing runoff volume, suggesting that continuous-event calibration should still be used when runoff volume is the main concern of a study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the application of an improved particle swarm optimization (PSO) technique for training an artificial neural network (ANN) to predict water levels for the Heshui watershed, China. Daily values of rainfall and water levels from 1988 to 2000 were first analyzed using ANNs trained with the conjugate-gradient, gradient descent and Levenberg-Marquardt neural network (LM-NN) algorithms. The best results were obtained from LM-NN and these results were then compared with those from PSO-based ANNs, including conventional PSO neural network (CPSONN) and improved PSO neural network (IPSONN) with passive congregation. The IPSONN algorithm improves PSO convergence by using the selfish herd concept in swarm behavior. Our results show that the PSO-based ANNs performed better than LM-NN. For models run using a single parameter (rainfall) as input, the root mean square error (RMSE) of the testing dataset for IPSONN was the lowest (0.152 m) compared to those for CPSONN (0.161 m) and LM-NN (0.205 m). For multi-parameter (rainfall and water level) inputs, the RMSE of the testing dataset for IPSONN was also the lowest (0.089 m) compared to those for CPSONN (0.105 m) and LM-NN (0.145 m). The results also indicate that the LM-NN model performed poorly in predicting the low and peak water levels, in comparison to the PSO-based ANNs. Moreover, the IPSONN model was superior to CPSONN in predicting extreme water levels. Lastly, IPSONN had a quicker convergence rate compared to CPSONN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of climate on forest stand composition, development and growth is undeniable. Many studies have tried to quantify the effect of climatic variables on forest growth and yield. These works become especially important because there is a need to predict the effects of climate change on the development of forest ecosystems. One of the ways of facing this problem is the inclusion of climatic variables into the classic empirical growth models. The work has a double objective: (i) to identify the indicators which best describe the effect of climate on Pinus halepensis growth and (ii) to quantify such effect in several scenarios of rainfall decrease which are likely to occur in the Mediterranean area. A growth mixed model for P. halepensis including climatic variables is presented in this work. Growth estimates are based on data from the Spanish National Forest Inventory (SNFI). The best results are obtained for the indices including rainfall, or rainfall and temperature together, with annual precipitation, precipitation effectiveness, Emberger?s index or free bioclimatic intensity standing out among them. The final model includes Emberger?s index, free bioclimatic intensity and interactions between competition and climate indices. The results obtained show that a rainfall decrease about 5% leads to a decrease in volume growth of 5.5?7.5% depending on site quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an open access article under the CC BY-NC-ND license.Neuro-Fuzzy Systems (NFS) are computational intelligence tools that have recently been employed in hydrological modeling. In many of the common NFS the learning algorithms used are based on batch learning where all the parameters of the fuzzy system are optimized off-line. Although these models have frequently been used, there is a criticism on such learning process as the number of rules are needed to be predefined by the user. This will reduce the flexibility of the NFS architecture while dealing with different data with different level of complexity. On the other hand, online or local learning evolves through local adjustments in the model as new data is introduced in sequence. In this study, dynamic evolving neural fuzzy inference system (DENFIS) is used in which an evolving, online clustering algorithm called the Evolving Clustering Method (ECM) is implemented. ECM is an online, maximum distance-based clustering method which is able to estimate the number of clusters in a data set and find their current centers in the input space through its fast, one-pass algorithm. The 10-minutes rainfall-runoff time series from a small (23.22 km2) tropical catchment named Sungai Kayu Ara in Selangor, Malaysia, was used in this study. Out of the 40 major events, 12 were used for training and 28 for testing. Results obtained by DENFIS were then compared with the ones obtained by physically-based rainfall-runoff model HEC-HMS and a regression model ARX. It was concluded that DENFIS results were comparable to HEC-HMS and superior to ARX model. This indicates a strong potential for DENFIS to be used in rainfall-runoff modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE 802.11p is the new standard for Inter-Vehicular Communications (IVC) using the 5.9 GHz frequency band, as part of the DSRC framework; it will enable applications based on Cooperative Systems. Simulation is widely used to estimate or verify the potential benefits of such cooperative applications, notably in terms of safety for the drivers. We have developed a performance model for 802.11p that can be used by simulations of cooperative applications (e.g. collision avoidance) without requiring intricate models of the whole IVC stack. Instead, it provide a a straightforward yet realistic modelisation of IVC performance. Our model uses data from extensive field trials to infer the correlation between speed, distance and performance metrics such as maximum range, latency and frame loss. Then, we improve this model to limit the number of profiles that have to be generated when there are more than a few couples of emitter-receptor in a given location. Our model generates realistic performance for rural or suburban environments among small groups of IVC-equipped vehicles and road side units.