989 resultados para rainfall characteristics
Resumo:
An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE and GAIA. Initial analyses established high, low and moderate traffic scenarios as well as low, low to moderate, moderate, high and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75µm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 µm, whereas metal concentrations in finer size range of <1-75 µm were not affected. As practical implications, solids <1 µm and organic matter from 1 - >300 µm can be targeted for removal of Ni, Cu, Pb, Cd, Cr and Zn from build-up whilst organic matter from <1 - >300 µm can be targeted for removal of Cd, Cr, Pb and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
The approach adopted for investigating the relationship between rainfall characteristics and pollutant wash-off process is commonly based on the use of parameters which represent the entire rainfall event. This does not permit the investigation of the influence of rainfall characteristics on different sectors of the wash-off process such as first flush where there is a high pollutant wash-off load at the initial stage of the runoff event. This research study analysed the influence of rainfall characteristics on the pollutant wash-off process using two sets of innovative parameters by partitioning wash-off and rainfall characteristics. It was found that the initial 10% of the wash-off process is closely linked to runoff volume related rainfall parameters including rainfall depth and rainfall duration while the remaining part of the wash-off process is primarily influenced by kinetic energy related rainfall parameters, namely, rainfall intensity. These outcomes prove that different sectors of the wash-off process are influenced by different segments of a rainfall event.
Resumo:
This thesis presents the outcomes of a comprehensive research study undertaken to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The knowledge created is expected to contribute to a greater understanding of urban stormwater quality and thereby enhance the design of stormwater quality treatment systems. The research study was undertaken based on selected urban catchments in Gold Coast, Australia. The research methodology included field investigations, laboratory testing, computer modelling and data analysis. Both univariate and multivariate data analysis techniques were used to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The rainfall characteristics investigated included average rainfall intensity and rainfall duration whilst catchment characteristics included land use, impervious area percentage, urban form and pervious area location. The catchment scale data for the analysis was obtained from four residential catchments, including rainfall-runoff records, drainage network data, stormwater quality data and land use and land cover data. Pollutants build-up samples were collected from twelve road surfaces in residential, commercial and industrial land use areas. The relationships between rainfall characteristics, catchment characteristics and urban stormwater quality were investigated based on residential catchments and then extended to other land uses. Based on the influence rainfall characteristics exert on urban stormwater quality, rainfall events can be classified into three different types, namely, high average intensity-short duration (Type 1), high average intensity-long duration (Type 2) and low average intensity-long duration (Type 3). This provides an innovative approach to conventional modelling which does not commonly relate stormwater quality to rainfall characteristics. Additionally, it was found that the threshold intensity for pollutant wash-off from urban catchments is much less than for rural catchments. High average intensity-short duration rainfall events are cumulatively responsible for the generation of a major fraction of the annual pollutants load compared to the other rainfall event types. Additionally, rainfall events less than 1 year ARI such as 6- month ARI should be considered for treatment design as they generate a significant fraction of the annual runoff volume and by implication a significant fraction of the pollutants load. This implies that stormwater treatment designs based on larger rainfall events would not be feasible in the context of cost-effectiveness, efficiency in treatment performance and possible savings in land area needed. This also suggests that the simulation of long-term continuous rainfall events for stormwater treatment design may not be needed and that event based simulations would be adequate. The investigations into the relationship between catchment characteristics and urban stormwater quality found that other than conventional catchment characteristics such as land use and impervious area percentage, other catchment characteristics such as urban form and pervious area location also play important roles in influencing urban stormwater quality. These outcomes point to the fact that the conventional modelling approach in the design of stormwater quality treatment systems which is commonly based on land use and impervious area percentage would be inadequate. It was also noted that the small uniformly urbanised areas within a larger mixed catchment produce relatively lower variations in stormwater quality and as expected lower runoff volume with the opposite being the case for large mixed use urbanised catchments. Therefore, a decentralised approach to water quality treatment would be more effective rather than an "end-of-pipe" approach. The investigation of pollutants build-up on different land uses showed that pollutant build-up characteristics vary even within the same land use. Therefore, the conventional approach in stormwater quality modelling, which is based solely on land use, may prove to be inappropriate. Industrial land use has relatively higher variability in maximum pollutant build-up, build-up rate and particle size distribution than the other two land uses. However, commercial and residential land uses had relatively higher variations of nutrients and organic carbon build-up. Additionally, it was found that particle size distribution had a relatively higher variability for all three land uses compared to the other build-up parameters. The high variability in particle size distribution for all land uses illustrate the dissimilarities associated with the fine and coarse particle size fractions even within the same land use and hence the variations in stormwater quality in relation to pollutants adsorbing to different sizes of particles.
Resumo:
The accuracy and reliability of urban stormwater quality modelling outcomes are important for stormwater management decision making. The commonly adopted approach where only a limited number of factors are used to predict urban stormwater quality may not adequately represent the complexity of the quality response to a rainfall event or site-to-site differences to support efficient treatment design. This paper discusses an investigation into the influence of rainfall and catchment characteristics on urban stormwater quality in order to investigate the potential areas for errors in current stormwater quality modelling practices. It was found that the influence of rainfall characteristics on pollutant wash-off is step-wise based on specific thresholds. This means that a modelling approach where the wash-off process is predicted as a continuous function of rainfall intensity and duration is not appropriate. Additionally, other than conventional catchment characteristics, namely, land use and impervious surface fraction, other catchment characteristics such as impervious area layout, urban form and site specific characteristics have an important influence on both, pollutant build-up and wash-off processes. Finally, the use of solids as a surrogate to estimate other pollutant species was found to be inappropriate. Individually considering build-up and wash-off processes for each pollutant species should be the preferred option.
Resumo:
Conventional rainfall classification for modelling and prediction is quantity based. This approach can lead to inaccuracies in stormwater quality modelling due to the assignment of stochastic pollutant parameters to a rainfall event. A taxonomy for natural rainfall events in the context of stormwater quality is presented based on an in-depth investigation of the influence of rainfall characteristics on stormwater quality. In the research study, the natural rainfall events were classified into three types based on average rainfall intensity and rainfall duration and the classification was found to be independent of the catchment characteristics. The proposed taxonomy provides an innovative concept in stormwater quality modelling and prediction and will contribute to enhancing treatment design for stormwater quality mitigation.
Resumo:
The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality can be influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigation of four urban residential catchments and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling outcomes indicate that selecting smaller average recurrence interval (ARI) events with high intensity-short duration as the threshold for the treatment system design is the most feasible since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of rainfall events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.
Resumo:
The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality is influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigations in four urban residential catchments based at Gold Coast, Australia, and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling results confirmed that high intensity-short duration events produce 58.0% of TS load while they only generated 29.1% of total runoff volume. Additionally, rainfall events smaller than 6-month average recurrence interval (ARI) generates a greater cumulative runoff volume (68.4% of the total annual runoff volume) and TS load (68.6% of the TS load exported) than the rainfall events larger than 6-month ARI. The results suggest that for the study catchments, stormwater treatment design could be based on the rainfall which had a mean value of 31 mm/h average intensity and 0.4 h duration. These outcomes also confirmed that selecting smaller ARI rainfall events with high intensity-short duration as the threshold for treatment system design is the most feasible approach since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.
Resumo:
We have analysed the diurnal cycle of rainfall over the Indian region (10S-35N, 60E-100E) using both satellite and in-situ data, and found many interesting features associated with this fundamental, yet under-explored, mode of variability. Since there is a distinct and strong diurnal mode of variability associated with the Indian summer monsoon rainfall, we evaluate the ability of the Weather Research and Forecasting Model (WRF) to simulate the observed diurnal rainfall characteristics. The model (at 54km grid-spacing) is integrated for the month of July, 2006, since this period was particularly favourable for the study of diurnal cycle. We first evaluate the sensitivity of the model to the prescribed sea surface temperature (SST), by using two different SST datasets, namely, Final Analyses (FNL) and Real-time Global (RTG). It was found that with RTG SST the rainfall simulation over central India (CI) was significantly better than that with FNL. On the other hand, over the Bay of Bengal (BoB), rainfall simulated with FNL was marginally better than with RTG. However, the overall performance of RTG SST was found to be better than FNL, and hence it was used for further model simulations. Next, we investigated the role of the convective parameterization scheme on the simulation of diurnal cycle of rainfall. We found that the Kain-Fritsch (KF) scheme performs significantly better than Betts-Miller-Janjić (BMJ) and Grell-Devenyi schemes. We also studied the impact of other physical parameterizations, namely, microphysics, boundary layer, land surface, and the radiation parameterization, on the simulation of diurnal cycle of rainfall, and identified the “best” model configuration. We used this configuration of the “best” model to perform a sensitivity study on the role of various convective components used in the KF scheme. In particular, we studied the role of convective downdrafts, convective timescale, and feedback fraction, on the simulated diurnal cycle of rainfall. The “best” model simulations, in general, show a good agreement with observations. Specifically, (i) Over CI, the simulated diurnal rainfall peak is at 1430 IST, in comparison to the observed 1430-1730 IST peak; (ii) Over Western Ghats and Burmese mountains, the model simulates a diurnal rainfall peak at 1430 IST, as opposed to the observed peak of 1430-1730 IST; (iii) Over Sumatra, both model and observations show a diurnal peak at 1730 IST; (iv) The observed southward propagating diurnal rainfall bands over BoB are weakly simulated by WRF. Besides the diurnal cycle of rainfall, the mean spatial pattern of total rainfall and its partitioning between the convective and stratiform components, are also well simulated. The “best” model configuration was used to conduct two nested simulations with one-way, three-level nesting (54-18-6km) over CI and BoB. While, the 54km and 18km simulations were conducted for the whole of July, 2006, the 6km simulation was carried out for the period 18 - 24 July, 2006. The results of our coarse- and fine-scale numerical simulations of the diurnal cycle of monsoon rainfall will be discussed.
Resumo:
Significant changes are reported in extreme rainfall characteristics over India in recent studies though there are disagreements on the spatial uniformity and causes of trends. Based on recent theoretical advancements in the Extreme Value Theory (EVT), we analyze changes in extreme rainfall characteristics over India using a high-resolution daily gridded (1 degrees latitude x 1 degrees longitude) dataset. Intensity, duration and frequency of excess rain over a high threshold in the summer monsoon season are modeled by non-stationary distributions whose parameters vary with physical covariates like the El-Nino Southern Oscillation index (ENSO-index) which is an indicator of large-scale natural variability, global average temperature which is an indicator of human-induced global warming and local mean temperatures which possibly indicate more localized changes. Each non-stationary model considers one physical covariate and the best chosen statistical model at each rainfall grid gives the most significant physical driver for each extreme rainfall characteristic at that grid. Intensity, duration and frequency of extreme rainfall exhibit non-stationarity due to different drivers and no spatially uniform pattern is observed in the changes in them across the country. At most of the locations, duration of extreme rainfall spells is found to be stationary, while non-stationary associations between intensity and frequency and local changes in temperature are detected at a large number of locations. This study presents the first application of nonstationary statistical modeling of intensity, duration and frequency of extreme rainfall over India. The developed models are further used for rainfall frequency analysis to show changes in the 100-year extreme rainfall event. Our findings indicate the varying nature of each extreme rainfall characteristic and their drivers and emphasize the necessity of a comprehensive framework to assess resulting risks of precipitation induced flooding. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Regionalization of extreme rainfall is useful for various applications in hydro-meteorology. There is dearth of regionalization studies on extreme rainfall in India. In this perspective, a set of 25 regions that are homogeneous in 1-, 2-, 3-, 4- and 5-day extreme rainfall is delineated based on seasonality measure of extreme rainfall and location indicators (latitude, longitude and altitude) by using global fuzzy c-means (GFCM) cluster analysis. The regions are validated for homogeneity in L-moment framework. One of the applications of the regions is in arriving at quantile estimates of extreme rainfall at sparsely gauged/ungauged locations using options such as regional frequency analysis (RFA). The RFA involves use of rainfall-related information from gauged sites in a region as the basis to estimate quantiles of extreme rainfall for target locations that resemble the region in terms of rainfall characteristics. A procedure for RFA based on GFCM-delineated regions is presented and its effectiveness is evaluated by leave-one-out cross validation. Error in quantile estimates for ungauged sites is compared with that resulting from the use of region-of-influence (ROI) approach that forms site-specific regions exclusively for quantile estimation. Results indicate that error in quantile estimates based on GFCM regions and ROI are fairly close, and neither of them is consistent in yielding the least error over all the sites. The cluster analysis approach was effective in reducing the number of regions to be delineated for RFA.
Resumo:
Tropical-extratropical cloud band systems over southern Africa, known as tropical temperate troughs (TTTs), are known to contribute substantially to South African summer rainfall. This study performs a comprehensive assessment of the seasonal cycle and rainfall contribution of TTTs by using a novel object-based strategy that explicitly tracks these systems for their full life cycle. The methodology incorporates a simple assignment of station rainfall data to each event, thereby creating a database containing detailed rainfall characteristics for each TTT. This is used to explore the importance of TTTs for rain days and climatological rainfall totals in October–March. Average contributions range from 30 to 60 % with substantial spatial heterogeneity observed. TTT rainfall contributions over the Highveld and eastern escarpment are lower than expected. A short analysis of TTT rainfall variability indicates TTTs provide substantial, but not dominant, intraseasonal and interannual variability in station rainfall totals. TTTs are however responsible for a high proportion of heavy rainfall days. Of 52 extreme rainfall events in the 1979–1999 period, 30 are associated with these tropical-extratropical interactions. Cut-off lows were included in the evolution of 6 of these TTTs. The study concludes with an analysis of the question: does the Madden-Julian Oscillation influence the intensity of TTT rainfall over South Africa? Results suggest a weak but significant suppression (enhancement) of intensity during phase 1(6).
Resumo:
Hydrological loss is a vital component in many hydrological models, which are usedin forecasting floods and evaluating water resources for both surface and subsurface flows. Due to the complex and random nature of the rainfall runoff process, hydrological losses are not yet fully understood. Consequently, practitioners often use representative values of the losses for design applications such as rainfall-runoff modelling which has led to inaccurate quantification of water quantities in the resulting applications. The existing hydrological loss models must be revisited and modellers should be encouraged to utilise other available data sets. This study is based on three unregulated catchments situated in Mt. Lofty Ranges of South Australia (SA). The paper focuses on conceptual models for: initial loss (IL), continuing loss (CL) and proportional loss (PL) with rainfall characteristics (total rainfall (TR) and storm duration (D)), and antecedent wetness (AW) conditions. The paper introduces two methods that can be implemented to estimate IL as a function of TR, D and AW. The IL distribution patterns and parameters for the study catchments are determined using multivariate analysis and descriptive statistics. The possibility of generalising the methods and the limitations of this are also discussed. This study will yield improvements to existing loss models and will encourage practitioners to utilise multiple data sets to estimate losses, instead of using hypothetical or representative values to generalise real situations.
Resumo:
Soil erosion is a serious environmental threat in the Mediterranean region due to torrential rainfalls, and it contributes to the degradation of agricultural land. Techniques such as rainwater harvesting may improve soil water storage and increase agricultural productivity, which could result in more effective land usage. Reservoir tillage is an effective system of harvesting rainwater, but it has not been scientifically evaluated like other tillage systems. Its suitability for the conditions in Spain has not been determined. To investigate and quantify water storage from reservoir tillage and how it could be adapted to improve infiltration of harvested rainwater, a laboratory-scale rainfall simulator was developed. Rainfall characteristics, including rainfall intensity, spatial uniformity and raindrop size, confirm that natural rainfall conditions are simulated with sufficient accuracy. The simulator was auto-controlled by a solenoid valve and three pressure nozzles were used to spray water corresponding to five rainfall intensities ranging from 36 to 112 mm h-1 for 3 to 101-year return period with uniformity coefficients between 83 and 94%. In order to assess the reservoir tillage method under surface slopes of 0, 5, and 10%, three soil scooping devices with identical volume were used to make depressions in the following forms: a) truncated square pyramid, b) triangular prism, and c) truncated cone. These depressions were compared to a control soil surface with no depression. For the loam soil used in this study, results show that reservoir tillage was able to reduce soil erosion and surface runoff and significantly increase infiltration. There was significant difference between the depressions and the control. Compared to the control, depression (a) reduced surface runoff by about 61% and the sediment yield concentration by about 79%.