983 resultados para rain pools


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aedes albifasciatus is a floodwater mosquito that breeds in temporary waters. This semi-domestic species, widely distributed in Argentina, is a competent vector of the western equine encephalitis. The present study was carried out in two rain pools of the city of Buenos Aires, from April 1998 through March 1999. Samples were taken twice a week during the cold season and daily during the warmer months, starting from October. Immature mosquitoes were collected with a dipper, being the number of dippers proportional to the flooded area. The estimated rainfall thresholds to initiate cohorts of Ae. albifasciatus were: 16-17 mm in the fall-winter period, 25 mm in the spring, and 30 mm in the summer. The development time of the different cohorts and the mean air temperature of their respective periods were estimated in all seasons, ranging from six days (at 24ºC) to 32 days (at 13ºC). The equation that best expresses the relationship between development time and mean air temperature is dt =166,27.e-0,1435.T (R²=0,92). Significantly shorter development times were recorded for larvae of the first three stages as compared to the fourth larval stage and pupae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immature stages of Ochlerotatus albifasciatus develop in temporary pools. The present study aims at evaluating the seasonal dynamics of the aquatic stages of this mosquito, also analyzing the relationship among their presence and breeding success to some relevant climatic and environmental variables in the ephemeral rain pools of an urban park. Nineteen cohorts of O. albifasciatus that developed synchronously after rain events were recorded in all seasons. The proportions of mosquito-positive pools were significantly higher during the fall-winter period than in the spring-summer months (p < 0.001). The presence of this mosquito species was positively related to the amount of rain (p < 0.001), whereas negatively correlated to air temperature (p < 0.05) within a 5.2 to 29.7ºC range. The distribution of the number of cohorts per pool throughout the year was grouped (variance/mean: 3.96), indicating that these habitats were not equally suitable as breeding sites. The immature stages of O. albifasciatus were detected in pools belonging to all of the categories of surface area, depth, duration, vegetation cover, and insolation. However, the proportion of pools where immature mosquitoes were detected was positively and significantly related to surface, depth, duration, and vegetation cover. On the other hand, the proportion of mosquito-positive pools was higher at an intermediate insolation degree. Our results suggest that although preimaginal stages were present in all seasons, high temperatures may be unfavorable to larval development, and substrate vegetation may regulate water temperature. The positive relationship between the proportion of mosquito-positive pools and pool size and duration might reflect a strategy of O. albifasciatus to accomplish immature development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined whether high nutrient concentrations associated with leaf-cutting ant nests influence plant growth and plant water relations in Amazon rain forests. Three nests of Atta cephalotes were selected along with 31 Amaioua guianensis and Protium sp. trees that were grouped into trees near and distant (>10 m) from nests. A 15N leaf-labelling experiment confirmed that trees located near nests accessed nutrients from nests. Trees near nests exhibited higher relative growth rates (based on stem diameter increases) on average compared with trees further away; however this was significant for A. guianensis (near nest 0.224 y−1 and far from nest 0.036 y−1) but not so for Protium sp. (0.146 y−1 and 0.114 y−1 respectively). Water relations were similarly species-specific; for A. guianensis, near-nest individuals showed significantly higher sap flow rates (16 vs. 5 cm h−1), higher predawn/midday water potentials (−0.66 vs. −0.98 MPa) and lower foliar δ13C than trees further away indicating greater water uptake in proximity to the nests while the Protium sp. showed no significant difference except for carbon isotopes. This study thus shows that plant response to high nutrient concentrations in an oligotrophic ecosystem varies with species. Lower seedling abundance and species richness on nests as compared with further away suggests that while adult plants access subterranean nutrient pools, the nest surfaces themselves do not encourage plant establishment and growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The West African Monsoon (WAM) and its representation in numerical models are strongly influenced by the Saharan Heat Low (SHL), a low-pressure system driven by radiative heating over the central Sahara and ventilated by the cold and moist inflow from adjacent oceans. It has recently been shown that a significant part of the southerly moisture flux into the SHL originates from convective cold pools over the Sahel. These density currents driven by evaporation of rain are largely absent in models with parameterized convection. This crucial issue has been hypothesized to contribute to the inability of many climate models to reproduce the variability of the WAM. Here, the role of convective cold pools approaching the SHL from the Atlas Mountains, which are a strong orographic trigger for deep convection in Northwest Africa, is analyzed. Knowledge about the frequency of these events, as well as their impact on large-scale dynamics, is required to understand their contribution to the variability of the SHL and to known model uncertainties. The first aspect is addressed through the development of an objective and automated method for the generation of multi-year climatologies not available before. The algorithm combines freely available standard surface observations with satellite microwave data. Representativeness of stations and influence of their spatial density are addressed by comparison to a satellite-only climatology. Applying this algorithm to data from automated weather stations and manned synoptic stations in and south of the Atlas Mountains reveals the frequent occurrence. On the order of 6 events per month are detected from May to September when the SHL is in its northernmost position. The events tend to cluster into several-days long convectively active periods, often with strong events on consecutive days. This study is the first to diagnose dynamical impacts of such periods on the SHL, based on simulations of two example cases using the Weather Research and Forecast (WRF) model at convection-permitting resolution. Sensitivity experiments with artificially removed cold pools as well as different resolutions and parameterizations are conducted. Results indicate increases in surface pressure of more than 1 hPa and significant moisture transports into the desert over several days. This moisture affects radiative heating and thus the energy balance of the SHL. Even though cold pool events north of the SHL are less frequent when compared to their Sahelian counterparts, it is shown that they gain importance due to their temporal clustering on synoptic timescale. Together with studies focusing on the Sahel, this work emphasizes the need for improved parameterization schemes for deep convection in order to produce more reliable climate projections for the WAM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to evaluate the floristic composition, richness, and diversity of the upper and lower strata of a stretch of mixed rain forest near the city of Itaberá, in southeastern Brazil. We also investigated the differences between this conservation area and other stretches of mixed rain forest in southern and southeastern Brazil, as well as other nearby forest formations, in terms of their floristic relationships. For our survey of the upper stratum (diameter at breast height [DBH] > 15 cm), we established 50 permanent plots of 10 × 20 m. Within each of those plots, we designated five, randomly located, 1 × 1 m subplots, in order to survey the lower stratum (total height > 30 cm and DBH < 15 cm). In the upper stratum, we sampled 1429 trees and shrubs, belonging to 134 species, 93 genera, and 47 families. In the lower stratum, we sampled 758 trees and shrubs, belonging to 93 species, 66 genera, and 39 families. In our floristic and phytosociological surveys, we recorded 177 species, belonging to 106 genera and 52 families. The Shannon Diversity Index was 4.12 and 3.5 for the upper and lower strata, respectively. Cluster analysis indicated that nearby forest formations had the strongest floristic influence on the study area, which was therefore distinct from other mixed rain forests in southern Brazil and in the Serra da Mantiqueira mountain range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the flow of diaspores is fundamental for determining plant population dynamics in a particular habitat, and a lack of seeds is a limiting factor in forest regeneration, especially in isolated forest fragments. Bamboo dominance affects forest structure and dynamics by suppressing or delaying the recruitment of and colonization by tree species as well as by inhibiting the survival and growth of adult trees. The goal of the present study was to determine whether dominance of the bamboo species Aulonemia aristulata (Döll) McClure in the forest understory influences species abundance and composition. We examined the seed rain at two noncontiguous sites (1.5 km apart) within an urban forest fragment, with and without bamboo dominance (BD+ and BD- areas, respectively). Sixty seed traps (0.5 m², with a 1-mm mesh) were set in the BD+ and BD- areas, and the seed rain was sampled from January to December 2007. Diaspores were classified according to dispersal syndrome, growth form and functional type of the species to which they belonged. There were significant differences between the two areas in terms of seed density, species diversity and dispersal syndrome. The BD+ area showed greater seed density and species diversity. In both areas, seed distribution was limited primarily by impaired dispersal. Bamboo dominance and low tree density resulted in fewer propagules in the seed rain. Our results suggest that low availability of seeds in the rain does not promote the maintenance of a degraded state, characterized by the presence of bamboo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How information transmission processes between individuals are shaped by natural selection is a key question for the understanding of the evolution of acoustic communication systems. Environmental acoustics predict that signal structure will differ depending on general features of the habitat. Social features, like individual spacing and mating behavior, may also be important for the design of communication. Here we present the first experimental study investigating how a tropical rainforest bird, the white-browed warbler Basileuterus leucoblepharus, extracts various information from a received song: species-specific identity, individual identity and location of the sender. Species-specific information is encoded in a resistant acoustic feature and is thus a public signal helping males to reach a wide audience. Conversely, individual identity is supported by song features susceptible to propagation: this private signal is reserved for neighbors. Finally, the receivers can locate the singers by using propagation-induced song modifications. Thus, this communication system is well matched to the acoustic constraints of the rain forest and to the ecological requirements of the species. Our results emphasize that, in a constraining acoustic environment, the efficiency of a sound communication system results from a coding/decoding process particularly well tuned to the acoustic properties of this environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical number fluxes of aerosol particles and vertical fluxes of CO(2) were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO(2) fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO(2), and being released from the canopy when conditions become more turbulent in the morning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Number fluxes of particles with diameter larger than 10 nm were measured with the eddy covariance method over the Amazon rain forest during the wet season as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) campaign 2008. The primary goal was to investigate whether sources or sinks dominate the aerosol number flux in the tropical rain forest-atmosphere system. During the measurement campaign, from 12 March to 18 May, 60% of the particle fluxes pointed downward, which is a similar fraction to what has been observed over boreal forests. The net deposition flux prevailed even in the absolute cleanest atmospheric conditions during the campaign and therefore cannot be explained only by deposition of anthropogenic particles. The particle transfer velocity v(t) increased with increasing friction velocity and the relation is described by the equation v(t) = 2.4x10(-3)xu(*) where u(*) is the friction velocity. Upward particle fluxes often appeared in the morning hours and seem to a large extent to be an effect of entrainment fluxes into a growing mixed layer rather than primary aerosol emission. In general, the number source of primary aerosol particles within the footprint area of the measurements was small, possibly because the measured particle number fluxes reflect mostly particles less than approximately 200 nm. This is an indication that the contribution of primary biogenic aerosol particles to the aerosol population in the Amazon boundary layer may be low in terms of number concentrations. However, the possibility of horizontal variations in primary aerosol emission over the Amazon rain forest cannot be ruled out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Live aboveground biomass (AGB) is an important source of uncertainty in the carbon balance from the tropical regions in part due scarcity of reliable estimates of live AGB and its variation across landscapes and forest types. Studies of forest structure and biomass stocks of Neotropical forests are biased toward Amazonian and Central American sites. In particular, standardized estimates of aboveground biomass stocks for the Brazilian Atlantic forest are rarely available. Notwithstanding the role of environmental variables that control the distribution and abundance of biomass in tropical lowland forests has been the subject of considerable research, the effect of short, steep elevational gradients on tropical forest structure and carbon dynamics is not well known. In order to evaluate forest structure and live AGB variation along an elevational gradient (0-1100 m a.s.l.) of coastal Atlantic Forest in SE Brazil, we carried out a standard census of woody stems >= 4.8 cm dbh in 13 1-ha permanent plots established on four different sites in 2006-2007. Live AGB ranged from 166.3 Mg ha(-1) (bootstrapped 95% CI: 1444,187.0) to 283.2 Mg ha(-1) (bootstrapped 95% CI: 253.0,325.2) and increased with elevation. We found that local-scale topographic variation associated with elevation influences the distribution of trees >50 cm dbh and total live AGB. Across all elevations, we found more stems (64-75%) with limited crown illumination but the largest proportion of the live AGB (68-85%) was stored in stems with highly illuminated or fully exposed crowns. Topography, disturbance and associated changes in light and nutrient supply probably control biomass distribution along this short but representative elevational gradient. Our findings also showed that intact Atlantic forest sites stored substantial amounts of carbon aboveground. The live tree AGB of the stands was found to be lower than Central Amazonian forests, but within the range of Neotropical forests, in particular when compared to Central American forests. Our comparative data suggests that differences in live tree AGB among Neotropical forests are probably related to the heterogeneous distribution of large and medium-sized diameter trees within forests and how the live biomass is partitioned among those size classes, in accordance with general trends found by previous studies. In addition, the elevational variation in live AGB stocks suggests a large spatial variability over coastal Atlantic forests in Brazil, clearly indicating that it is important to consider regional differences in biomass stocks for evaluating the role of this threatened tropical biome in the global carbon cycle. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondonia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season (n = 14) and peak of the wet season (n = 14) and analyzed the samples for pH and concentrations of NH4+, Na+, K+, Ca2+ Mg2+,, Cl-, NO3-, SO42- and DOC. The coefficient 3 4 cient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly tow compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall. patterns was Low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of ""hot"" and ""cold"" spots of throughfall. quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor and in the soil. Solute deposition patterns showed less clear trends but all patterns displayed a short-term stability only. The weak stability of those patterns is apt to impede the formation of solute deposition -induced biochemical microhabitats in the soil. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the performance of fiber-cement corrugated sheets exposed to long-term weathering, exploring the effect of different environments on fiber-cement degradation. Fiber-cement corrugated sheets that had been exposed to weathering, and in place for more than 30-years, were collected from two different Brazilian cities (Sao Paulo and Criciuma). Mechanical properties (MOR, MOE and fracture toughness) were tested on samples removed from the corrugated sheets. Microstructure was evaluated by X-ray diffraction, SEM with EDS analysis, MIP and TG. The results show that the 37-year-old asbestos-cement corrugated sheets from Sao Paulo presented similar characteristics to those of the non-aged asbestos-cement readily available on the market place. Conversely, deterioration of the asbestos-cement from the industrial area of Criciuma is related to acidic attack, along with carbonation and leaching as a consequence of continued exposition to acid rain during several decades. This process resulted in higher porosity and lower mechanical strength, revealing that leaching mechanisms can have important effect on the performance of thin fiber-cement sheets. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bamboos often negatively affect tree recruitment, survival, and growth, leading to arrested tree regeneration in forested habitats. Studies so far have focused on the effects of bamboos on the performance of seedlings and saplings, but the influence of bamboos on forest dynamics may start very early in the forest regeneration process by altering seed rain patterns. We tested the prediction that the density and composition of the seed rain are altered and seed limitation is higher in stands of Guadua tagoara (B or bamboo stands), a large-sized woody bamboo native from the Brazilian Atlantic Forest, compared to forest patches without bamboos (NB or non-bamboo stands). Forty 1 m(2) seed traps were set in B and NB stands, and the seed rain was monitored monthly for 1 year. The seed rain was not greatly altered by the presence of bamboos: rarefied seed species richness was higher for B stands, patterns of dominance and density of seeds were similar between stands, and differences in overall composition were slight. Seed limitation, however, was greater at B stands, likely as a resulted of reduced tree density. Despite Such reduced density, the presence of trees growing amidst and over the bamboos seems to play a key role in keeping the seeds falling in B stands because they serve as food sources for frugivores or simply as perches for them. The loss of such trees may lead to enhanced seed limitation, contributing ultimately to the self-perpetuating bamboo disturbance cycle. (C) 2008 Elsevier B,V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four new species of Anastrepha Schiner were collected in McPhail-type traps hung in trees in a natural reserve and in commercial papaya orchards in Linhares, Espirito Santo state, Brazil. They are described and named herein as follows: Anastrepha atlantica n. sp., Anastrepha glochin n. sp., Anastrepha linharensis n. sp. and Anastrepha martinsi n. sp. Only the latter was collected in traps hung in papaya orchards. The classification of these species in species groups of Anastrepha is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results presented in this paper refer to a host survey, lasting approximately three and a half years (February 2003-july 2006), undertaken in the Vale do Rio Doce Natural Reserve, a remnant area of the highly endangered Atlantic Rain Forest located in Linhares County, State of Espirito Santo, Brazil. A total of 330 fruit samples were collected from native plants, representing 248 species and 51 plant families. Myrtaceae was the most diverse family with 54 sampled species. Twenty-eight plant species, from ten families, are hosts of ten Anastrepha species and of Ceratitis capitata (Wiedemann). Among 33 associations between host plants and fruit flies, 20 constitute new records, including the records of host plants for A. fumipennis Lima and A. nascimentoi Zucchi. The findings were discussed in the light of their implications for rain forest conservation efforts and the study of evolutionary relationships between fruit flies and their hosts.