40 resultados para raffinose
Resumo:
In this work, in vitro fermentation of alternansucrase raffinose-derived oligosaccharides, previously fractionated according to their degree of polymerization (DP; from DP4 to DP10), was carried out using small-scale pH-controlled batch cultures at 37 °C under anaerobic conditions with human feces. Bifidogenic activity of oligosaccharides with DP4�6 similar to that of lactulose was observed; however, in general, a significant growth of lactic acid bacteria Bacteroides, Atopobium cluster, and Clostridium histolyticum group was not shown during incubation. Acetic acid was the main short chain fatty acid (SCFA) produced during the fermentation process; the highest levels of this acid were shown by alternansucrase raffinose acceptor pentasaccharides at 10 h (63.11 mM) and heptasaccharides at 24 h (54.71 mM). No significant differences between the gas volume produced by the mixture of raffinose-based oligosaccharides (DP5�DP10) and inulin after 24 h of incubation were detected, whereas lower gas volume was generated by DP4 oligosaccharides. These findings indicate that novel raffinose-derived oligosaccharides (DP4�DP10) could be a new source of prebiotic carbohydrates.
Resumo:
The incorporation of sucrose into the thermophilic fungus,Thermomyces lanuginosus, occurred only in mycelia previously exposed to sucrose or raffinose. Sucrose uptake and invertase were inducible. Both activities appeared in sucrose-induced mycelia at about the same time. Both activities declined almost simultaneously following the exhaustion of sucrose in the medium. The sucrose-induced uptake system was specific for \beta -fructofuranosides as revealed by competition with various sugars. The induction of sucrose uptake system was blocked by cycloheximide, showing that it was dependent on new protein synthesis. Transport of sucrose did not seem to be dependent on ATP. Rather, uptake of this sugar seemed to be driven by a proton gradient across the plasma membrane. The uptake system showed Michaelis-Menten kinetics.
Resumo:
Raffinose oligosaccharides (RO) are the major factors responsible for flatulence following ingestion of soybean-derived products. Removal of RO from seeds or soymilk would then have a positive impact on the acceptance of soy-based foods. In this study, alpha-galactosidase from Aspergillus oryzae was entrapped in gelatin using formaldehyde as the hardener. The immobilization yield was 64.3% under the optimum conditions of immobilization. The immobilized alpha-galactosidase showed a shift in optimum pH from 4.8 to 5.4 in acetate buffer. The optimum temperature also shifted from 50 degrees C to 57 degrees C compared with soluble enzyme. Immobilized alpha-galactosidase was used in batch, repeated batch and continuous mode to degrade RO present in soymilk. In the repeated batch, 45% reduction of RO was obtained in the fourth cycle. The performance of immobilized alpha-galactosidase was tested in a fluidized bed reactor at different flow rates and 86% reduction of RO in soymilk was obtained at 25 ml h(-1) flow rate. The study revealed that immobilized alpha-galactosidase in continuous mode is efficient in reduction of RO present in soymilk.
Resumo:
YABBY基因家族是植物中特有的一个家族,它们具有氨基端的C2C2型的锌指结构域和羧基端的螺旋-环-螺旋YABBY结构域,这是其它真核生物中尚未发现的一种典型的并列保守结构域。在双子叶植物拟南芥中发现YABBY家族主要是促进侧生器官远轴面细胞的分化命运。 本论文从水稻中克隆到OsYAB6,序列比对发现它和拟南芥中的FIL/YABBY3同源性最高,推测它们是同源基因。OsYAB6超表达拟南芥中,侧生器官如叶片的近轴面细胞表现出明显的远轴面化的特点,与拟南芥中YABBY3超表达的表型相似,说明OsYAB6在拟南芥中仍可促进叶片细胞向远轴面细胞分化。拟南芥YABBY在侧生器官中的表达模式都具有极性分布的特点,与其决定远轴面细胞分化命运的功能是一致的。对水稻OsYAB6表达模式的研究发现,OsYAB6主 要在分生组织中表达,但不具有近-远轴面的极性。在叶中的表达集中在维管组织且只局限在韧皮部。这与拟南芥 YABBY基因在叶片中表达模式不同,暗示OsYAB6在水稻中有其新的功能。在转OsYAB6拟南芥中,尽管叶片的维管组织 近-远轴极性分布正常,但叶脉的排列模式不规则,说明OsYAB6超表达影响了维管组织的发育。这些结果表明,在进 化过程中YABBY家族的功能发生变化,OsYAB6在水稻中专一地在发育中的维管组织尤其是韧皮部表达,可能参与调控维管组织的发育,由于其在蛋白序列上的保守性使其保留与拟南芥中的同源基因相似功能。这也是本论文的创新之处。 该论文还对一个核苷糖异构酶OsUGE-1的生物学功能做了探索。OsUGE-1的表达受各种非生物胁迫诱导,但有关其在植物抗逆中的功能还不清楚。本研究发现超表达OsUGE-1的拟南芥提高了对高盐、干旱、低温胁迫的抗性,在转基因拟南芥中的棉籽糖含量比野生型显著提高。表明OsUGE-1超表达使拟南芥过量积累棉籽糖,从而提高了植物的抗逆性。该结果对于提高农作物的抗逆性具有潜在的应用价值。
Resumo:
The gastrointestinal tract (GIT) is a diverse ecosystem, and is colonised by a diverse array of bacteria, of which bifidobacteria are a significant component. Bifidobacteria are Gram-positive, saccharolytic, non-motile, non-sporulating, anaerobic, Y-shaped bacteria, which possess a high GC genome content. Certain bifidobacteria possess the ability to produce conjugated linoleic acid (CLA) from linoleic acid (LA) by a biochemical pathway that is hypothesised to be achieved via a linoleic isomerase. In Chapter two of this thesis it was found that the MCRA-specifying gene is not involved in CLA production in B. breve NCFB 2258, and that this gene specifies an oleate hydratase involved in the conversion of oleic acid into 10-hydroxystearic acid. Prebiotics are defined as non-digestible food ingredients that beneficially affect the host by selectively stimulating growth and/or activity of one or a limited number of bacteria in the colon. Key to the development of such novel prebiotics is to understand which carbohydrates support growth of bifidobacteria and how such carbohydrates are metabolised. In Chapter 3 of this thesis we describe the identification and characterisation of two neighbouring gene clusters involved in the metabolism of raffinose-containing carbohydrates (plus related carbohydrate melibiose) and melezitose by Bifidobacterium breve UCC2003. The fourth chapter of this thesis describes the analysis of transcriptional regulation of the raf and mel clusters. In the final experimental chapter two putative rep genes, designated repA7017 and repB7017, are identified on the megaplasmid pBb7017 of B. breve JCM 7017, the first bifidobacterial megaplasmid to be reported. One of these, repA7017, was subjected to an in-depth characterisation. The work described in this thesis has resulted in an improved understanding of bifidobacterial fatty acid and carbohydrate metabolism, Furthermore, attempts were made to develop novel genetic tools.
Resumo:
Dissertação de mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2015
Resumo:
Although much research has been conducted on blood-meal acquisition in adult female black flies (Diptera: Simuliidae), the same cannot be said for sugarmeals. Both sexes feed on sugar which provides energy for flight and it has been commonly held that nectar is the major carbohydrate source. This thesis addresses the question of whether a non-floral carbohydrate source, specifically homopteran honeydew, is ingested by male and female black flies. Black flies reared in the laboratory have been observed to readily ingest freshly excreted and older (dry) honeydew when presented with honeydew coated tamarack branches. Field work was conducted in Algonquin Park, Ontario in the spring and summer of 1993. Three separate studies were designed to test whether homopteran honeydew is an important carbohydrate source for black flies and whether flies from different habitats utilize different sugar sources. The sugars melezitose and / or stachyose are known to occur in a variety of homopteran honeydews and therefore were used as indicators of honeydew feeding by black flies. In the first study, black flies were collected with insect nets from a stand of Larix larcina heavily infested with honeydew - producing homopterans (Adelges lariciatus). Six black fly species were captured: Simulium venustum, S. rostra tum, S. vittatum, Stegopterna mutata, S. aureum and S. quebecense. Samples of honeydew and individual black flies were tested using thin layer chromatography (T. L. C.) with fructose, glucose, sucrose, turanose, melezitose, raffinose and stachyose as standards. All sugars except turanose and melezitose were found in the adelgid honeydew samples. Since the sugar melezitose was absent from ~ honeydew samples, stachyose was used to indicate that black flies were feeding from this particular honeydew source. Of the 201 black flies tested, 194 contained sugars which occurred in 16 combinations. Stachyose combinations excluding melezitose, present in 45.9 % of flies, were used to indicate that black flies had been feeding on the adelgid honeydew. In the second study, black flies were collected in the morning and evening on 8 collection dates, using a vehicle mounted insect net. The crops and midguts of 10 male and 10 female Simulium venustum were dissected on each sample date. In total the gut contents of 320 individual flies were analysed by T. L. C. The sugars identified from these flies were present in the following proportions: fructose (100.0%), glucose (100.0%), sucrose/turanose (50.4%), melezitose (30.3%), raffinose (18.8%) and stachyose (8.7%). These sugars occurred in fourteen different combinations. It is argued that the presence of melezitose and / or stachyose indicates that black flies had fed on homopteran honeydew. Significantly more female flies (40.0%) than male flies (27.5%) had fed on honeydew. In the third study, adult black flies were sampled by sweep netting vegetation in four habitats in the morning and evening on 8 collection dates. The habitats are as follows: (1) Davies Bog, (2) Abandoned Air Field (dominated by blueberries, Vaccinium spp.), (3) Deciduous Habitat and (4) Coniferous Habitat. Sugars in the crops and midguts of female flies were tested by T. L. C. and, for S. venustum, it was found that significantly fewer flies (18.8%) from the Air Field contained honeydew than from the other three sites (Davies Bog, 34.4%; Deciduous Habitat, 36.2%; Coniferous Habitat, 25.0%). Of the 1287 black flies tested individually by T. L. C. 441 (34.3%) contained melezitose and / or stachyose sugars indicating that this proportion of the population were feeding from Homopteran honeydew. It is therefore clear that floral (nectar) sugars are not the only source of carbohydrates available to black flies.
Resumo:
Crude cell-free extracts from Lactobacillus reuteri grown on cellobiose, maltose, lactose and raffinose were assayed for glycosidic activities. When raffinose was used as the carbon source, alpha-galactosidase was produced, showing the highest yield at the beginning of the stationary growth phase. A 64 kDa enzyme was purified by ultra- and gel filtration, and characterized for its hydrolytic and synthetic activity. Highest hydrolytic activity was found at pH 5.0 at 50 degreesC (K-M 0.55 mM, V-max 0.80 mumol min(-1) mg(-1) of protein). The crude cell-free extract was further used in glycosyl transfer reactions to synthesize oligosaccharides from melibiose and raffinose. At a substrate concentration of 23% (w/v) oligosaccharide mixtures were formed with main products being a trisaccharide at 26% (w/w) yield from melibiose after 8 h and a tetrasaccharide at 18% (w/w) yield from raffinose after 7 h. Methylation analysis revealed the trisaccharide to be 6' alpha-galactosyl melibiose and the tetrasaccharide to be stachyose. In both cases synthesis ceased when hydrolysis of the substrate reached 50%.
Resumo:
Stirred, pH-controlled anaerobic batch cultures were used to evaluate the in vitro utilisation by canine gut microflora of novel alpha-galactooligosaccharides synthesised with an enzyme extract from a canine Lactobacillus reuteri strain. Fructooligosaccharides (FOS), melibiose and raffinose were used as reference carbohydrates for the prebiotic properties of the synthesised oligosaccharide (galactosyl melibiose mixture-GMM). Addition of Lactobacillus acidophilus was used as control for the evaluation of the synbiotic properties of the oligosaccharide with L. reuteri. Populations of predominant gut bacterial groups were monitored over 48 h of batch culture by fluorescent in situ hybridisation, and short-chain fatty acid (SCFA) production was measured. GMM showed a higher increase in bifidobacteria and lactobacilli population number and size as well as a higher decrease in clostridia population number and size compared to the commercial prebiotics (FOS, melibiose, raffinose). This prebiotic effect was further increased by the addition of L. reuteri followed by a change in the SCFA production pattern compared to GMM alone or GMM with L. acidophilus. The observed change in SCFA production was in accordance with the fermentation properties of L. reuteri, suggesting that the novel synbiotic had a significant effect on the canine gut microflora fermentation.
Resumo:
To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ-free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well-defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co-metabolic products such as hippurate (urine) and 5-aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo-inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health-care investigations.
Resumo:
Background and Aims In the Amazonian floodplains plants withstand annual periods of flooding which can last 7 months. Under these conditions seedlings remain submerged in the dark for long periods since light penetration in the water is limited. Himatanthus sucuuba is a tree species found in the `varzea` (VZ) floodplains and adjacent non-flooded `terra-firme` (TF) forests. Biochemical traits which enhance flood tolerance and colonization success of H. sucuuba in periodically flooded environments were investigated. Methods Storage carbohydrates of seeds of VZ and TF populations were extracted and analysed by HPAEC/PAD. Starch was analysed by enzyme (glucoamylase) degradation followed by quantification of glucose oxidase. Carbohydrate composition of roots of VZ and TF seedlings was studied after experimental exposure to a 15-d period of submersion in light versus darkness. Key Results The endosperm contains a large proportion of the seed reserves, raffinose being the main nonstructural carbohydrate. Around 93% of the cell wall storage polysaccharides (percentage dry weight basis) in the endosperm of VZ seeds was composed of mannose, while soluble sugars accounted for 2.5%. In contrast, 74% of the endosperm in TF seeds was composed of galactomannans, while 22% of the endosperm was soluble sugars. This suggested a larger carbohydrate allocation to germination in TF populations whereas VZ populations allocate comparatively more to carbohydrates mobilized during seedling development. The concentration of root non-structural carbohydrates in non-flooded seedlings strongly decreased after a 15-d period of darkness, whereas flooded seedlings were less affected. These effects were more pronounced in TF seedlings, which showed significantly lower root non-structural carbohydrate concentrations. Conclusions There seem to be metabolic adjustments in VZ but not TF seedlings that lead to adaptation to the combined stresses of darkness and flooding. This seems to be important for the survival of the species in these contrasting environments, leading these populations to different directions during evolution.
Resumo:
Comparative analysis of zygotic and somatic embryogenesis of Acca sellowiana showed higher amounts of sucrose, fructose, raffinose, and myo-inositol in zygotic embryos at different developmental stages than in corresponding somatic ones. These differences were mostly constant. In general, glucose levels were significantly lower than the other soluble carbohydrates analyzed, showing minor variation in each embryo stage. Despite the presence of sucrose in the culture medium, its levels conspicuously diminished in somatic embryos compared with the zygotic ones. Raffinose enhanced parallel to embryo development, regardless of its zygotic or somatic origin. Analysis of the soluble carbohydrate composition of mature zygotic cotyledon used as explant pointed out fructose, glucose, myo-inositol, sucrose, and raffinose as the most important. Similar composition was also found in the corresponding somatic cotyledon. Total soluble carbohydrates varied inversely, decreasing in zygotic embryos and increasing in somatic embryos until the 24th d, at which time they increased rapidly about sixfold in zygotic embryos until the 27th d, a period coinciding with the zygotic proembryos formation. Such condition seems to reflect directly the variation of endogenous sucrose level, mainly because glucose and fructose diminished continuously during this time period. This means that, in terms of soluble sugars, zygotic embryo formation occurred under a situation represented by high sucrose amounts, simultaneously with low fructose and glucose levels, while in contrast, somatic embryo formation took place under an endogenous sugar status characterized by a substantial fructose enhancement. Starch levels increased continuously in zygotic embryos and decreased in somatic ones, the reverse to what was found in fructose variation. Starch accumulation was significantly higher in somatic torpedo and cotyledonary embryos than in the corresponding zygotic ones.
Resumo:
Seeds sprouts have been used as a good source of basic nutrients and nutraceutical compounds. The high nutritional value of seeds derives from the deposition of compounds during development. However some of these molecules are used in metabolic processes like germination, which leads to a considerable variation in their concentrations once these events are completed. In this work, we investigate the levels of inositols (myo-inositol, D-pinitol and ononitol), soluble carbohydrates and proteins in cotyledons of Phaseolus vulgaris and Vigna unguiculata sprouts. Sprouting increased myo-inositol and glucose content and reduction of raffinose and ononitol was observed. The protein levels increased in P. vulgaris and decreased in V. unguiculata sprouting. The level of sucrose was maintained in both sprouts. D-Pinitol was detected only in quiescent seeds. Our results suggested that bean sprout is an important source of proteins, sucrose, glucose and myo-inositol. Additionally, bean sprouts have low levels of raffinose, an antinutritional compound.