1000 resultados para radiosonde


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined use of both radiosonde data and three-dimensional satellite derived data over ocean and land is useful for a better understanding of atmospheric thermodynamics. Here, an attempt is made to study the ther-modynamic structure of convective atmosphere during pre-monsoon season over southwest peninsular India utilizing satellite derived data and radiosonde data. The stability indices were computed for the selected stations over southwest peninsular India viz: Thiruvananthapuram and Cochin, using the radiosonde data for five pre- monsoon seasons. The stability indices studied for the region are Showalter Index (SI), K Index (KI), Lifted In-dex (LI), Total Totals Index (TTI), Humidity Index (HI), Deep Convective Index (DCI) and thermodynamic pa-rameters such as Convective Available Potential Energy (CAPE) and Convective Inhibition Energy (CINE). The traditional Showalter Index has been modified to incorporate the thermodynamics over tropical region. MODIS data over South Peninsular India is also used for the study. When there is a convective system over south penin-sular India, the value of LI over the region is less than −4. On the other hand, the region where LI is more than 2 is comparatively stable without any convection. Similarly, when KI values are in the range 35 to 40, there is a possibility for convection. The threshold value for TTI is found to be between 50 and 55. Further, we found that prior to convection, dry bulb temperature at 1000, 850, 700 and 500 hPa is minimum and the dew point tem-perature is a maximum, which leads to increase in relative humidity. The total column water vapor is maximum in the convective region and minimum in the stable region. The threshold values for the different stability indices are found to be agreeing with that reported in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regular visual observations of persistent contrails over Reading, UK, have been used to evaluate radiosonde measurements of temperature and humidity defining cold ice-supersaturated atmospheric regions which are assumed to be a necessary condition for persistent condensation trails (contrails) to form. Results show a good correlation between observations and predictions using data from Larkhill, 63 km from Reading. A statistical analysis of this result and the forecasts using data from four additional UK radiosonde stations are presented. The horizontal extent of supersaturated layers could be inferred from this to be several hundred kilometres. The necessity of bias corrections to radiosonde humidity measurements is discussed and an analysis of measured ice-supersaturated atmospheric layers in the troposphere is presented. It is found that ice supersaturation is more likely to occur in winter than in summer, with frequencies of 17.3% and 9.4%, respectively, which is mostly due to the layers being thicker in winter than in summer. The most probable height for them to occur is about 10 km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for in situ detection of atmospheric turbulence has been developed using an inexpensive sensor carried within a conventional meteorological radiosonde. The sensor-a Hall effect magnetometer-was used to monitor the terrestrial magnetic field. Rapid time scale (10 s or less) fluctuations in the magnetic field measurement were related to the motion of the radiosonde, which was strongly influenced by atmospheric turbulence. Comparison with cloud radar measurements showed turbulence in regions where rapid time-scale magnetic fluctuations occurred. Reliable measurements were obtained between the surface and the stratosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the largest uncertainties in quantifying the impact of aviation on climate concerns the formation and spreading of persistent contrails. The inclusion of a cloud scheme that allows for ice supersaturation into the integrated forecast system (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) can be a useful tool to help reduce these uncertainties. This study evaluates the quality of the ECMWF forecasts with respect to ice super saturation in the upper troposphere by comparing them to visual observations of persistent contrails and radiosonde measurements of ice supersaturation over England. The performance of 1- to 3-day forecasts is compared including also the vertical accuracy of the supersaturation forecasts. It is found that the operational forecasts from the ECMWF are able to predict cold ice supersaturated regions very well. For the best cases Peirce skill scores of 0.7 are obtained, with hit rates at times exceeding 80% and false-alarm rates below 20%. Results are very similar for comparisons with visual observations and radiosonde measurements, the latter providing the better statistical significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric profiles of cosmic rays and radioactivity can be obtained using adapted meteorologi- cal radiosondes, for which Geiger tubes remain widely used detectors. Simultaneous triggering of two tubes provides an indication of energetic events. As, however, only small volume detectors can be carried, the event rate is small, which, due to the rapid balloon ascent, cannot be circumvented using long averaging periods. To derive count rates at low altitudes, a microcontroller is used to de- termine the inter-event time. This yields estimates of the coincidence rate below 5 km, where the coincidence rate is too small to determine solely by event counting

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study has been carried out to assess the importance of radiosonde corrections in improving the agreement between satellite and radiosonde measurements of upper-tropospheric humidity. Infrared [High Resolution Infrared Radiation Sounder (HIRS)-12] and microwave [Advanced Microwave Sounding Unit (AMSU)-18] measurements from the NOAA-17 satellite were used for this purpose. The agreement was assessed by comparing the satellite measurements against simulated measurements using collocated radiosonde profiles of the Atmospheric Radiation Measurement (ARM) Program undertaken at tropical and midlatitude sites. The Atmospheric Radiative Transfer Simulator (ARTS) was used to simulate the satellite radiances. The comparisons have been done under clear-sky conditions, separately for daytime and nighttime soundings. Only Vaisala RS92 radiosonde sensors were used and an empirical correction (EC) was applied to the radiosonde measurements. The EC includes correction for mean calibration bias and for solar radiation error, and it removes radiosonde bias relative to three instruments of known accuracy. For the nighttime dataset, the EC significantly reduces the bias from 0.63 to 20.10 K in AMSU-18 and from 1.26 to 0.35 K in HIRS-12. The EC has an even greater impact on the daytime dataset with a bias reduction from 2.38 to 0.28 K in AMSU-18 and from 2.51 to 0.59 K in HIRS-12. The present study promises a more accurate approach in future radiosonde-based studies in the upper troposphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of the vertical distribution measurements of humidity in the atmosphere is very important in meteorology due to the crucial role that water vapor plays in the earth's energy budget. The radiosonde is the humidity measurement device that provides the best vertical resolution. Also, radiosondes are the operational devices that are used to measure the vertical profile of atmospheric water vapor. The World Meteorological Organization (WMO) has carried out several intercomparison experiments at different climatic zones in order to identify the differences between the available commercial sensors. This article presents the results of an experiment that was carried out in Brazil in 2001 in which major commercial radiosonde manufacturers [e.g., Graw Radiosondes GmbH & Co., KG (Germany); MODEM (France); InterMet Systems (United States); Sippican, Inc. (United States); and Vaisala (Finland)] were involved. One of the main goals of this experiment was to evaluate the performance of the different humidity sensors in a tropical region. This evaluation was performed for different atmospheric layers and distinct periods of the day. It also considers the computation of the integrated water vapor (IWV). The results showed that the humidity measurements achieved by the different sensors were quite similar in the low troposphere (the bias median value regarding the RS80 was around 1.8%) and were quite dispersed in the superior layers (the median rms regarding the RS80 was around 14.9%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many observed time series of the global radiosonde or PILOT networks exist as fragments distributed over different archives. Identifying and merging these fragments can enhance their value for studies on the three-dimensional spatial structure of climate change. The Comprehensive Historical Upper-Air Network (CHUAN version 1.7), which was substantially extended in 2013, and the Integrated Global Radiosonde Archive (IGRA) are the most important collections of upper-air measurements taken before 1958. CHUAN (tracked) balloon data start in 1900, with higher numbers from the late 1920s onward, whereas IGRA data start in 1937. However, a substantial fraction of those measurements have not been taken at synoptic times (preferably 00:00 or 12:00 GMT) and on altitude levels instead of standard pressure levels. To make them comparable with more recent data, the records have been brought to synoptic times and standard pressure levels using state-of-the-art interpolation techniques, employing geopotential information from the National Oceanic and Atmospheric Administration (NOAA) 20th Century Reanalysis (NOAA 20CR). From 1958 onward the European Re-Analysis archives (ERA-40 and ERA-Interim) available at the European Centre for Medium-Range Weather Forecasts (ECMWF) are the main data sources. These are easier to use, but pilot data still have to be interpolated to standard pressure levels. Fractions of the same records distributed over different archives have been merged, if necessary, taking care that the data remain traceable back to their original sources. If possible, station IDs assigned by the World Meteorological Organization (WMO) have been allocated to the station records. For some records which have never been identified by a WMO ID, a local ID above 100 000 has been assigned. The merged data set contains 37 wind records longer than 70 years and 139 temperature records longer than 60 years. It can be seen as a useful basis for further data processing steps, most notably homogenization and gridding, after which it should be a valuable resource for climatological studies. Homogeneity adjustments for wind using the NOAA-20CR as a reference are described in Ramella Pralungo and Haimberger (2014). Reliable homogeneity adjustments for temperature beyond 1958 using a surface-data-only reanalysis such as NOAA-20CR as a reference have yet to be created. All the archives and metadata files are available in ASCII and netCDF format in the PANGAEA archive