968 resultados para radiation absorption analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quaternary-ordered double perovskite A2MM’O6 (M=Mo,W) semiconductors are a group of materials with a variety of photocatalytic and optoelectronic applications. An analysis focused on the optoelectronic properties is carried out using first-principles density-functional theory with several U orbital-dependent one-electron potentials applied to different orbital subspaces. The structural non-equivalence of the atoms resulting from the symmetry has been taken in account. In order to analyze optical absorption in these materials deeply, the absorption coefficients have been split into inter- and intra-non-equivalent species contributions. The results indicate that the effect of the A and M’ atoms on the optical properties are minimal whereas the largest contribution comes from the non-equivalent O atoms to M transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ribozymes are polynucleotide molecules with intrinsic catalytic activity, capable of cleaving nucleic acid substrates. Large RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. Frozen RNAs were irradiated with high energy electrons. Surviving ribozyme activity was determined using the ability of the irradiated ribozymes to cleave a labeled substrate. The amount of intact RNA remaining was determined from the same irradiated samples by scanning the RNA band following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 kDa and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity versus structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. We concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule. Radiation target analysis should be a useful technique for evaluating local RNA:RNA and RNA:protein interactions in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analytical solution to the one-dimensional absorption–conduction heat transfer problem inside a single glass pane is presented, which correctly takes into account all the relevant physical phenomena: the appearance of multiple reflections, the spectral distribution of solar radiation, the spectral dependence of optical properties, the presence of possible coatings, the non-uniform nature of radiation absorption, and the diffusion of heat by conduction across the glass pane. Additionally to the well established and known direct absorptance αe, the derived solution introduces a new spectral quantity called direct absorptance moment βe, that indicates where in the glass pane is the absorption of radiation actually taking place. The theoretical and numerical comparison of the derived solution with existing approximate thermal models for the absorption–conduction problem reveals that the latter ones work best for low-absorbing uncoated single glass panes, something not necessarily fulfilled by modern glazings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

LIMA (Laser-induced Ion Mass Analysis) is a new technique capable of compositional analysis of thin films and surface regions. Under UHV conditions a focused laser beam evaporates and ionizes a microvolume of specimen material from which a mass spectrum is obtained. LIMA has been used to examine a range of thin film materials with applications in electronic devices. The neutral photon probe avoids charging problems, and low conductivity materials are examined without prior metallization. Analyses of insulating silicon oxides, nitrides, and oxynitrides confirm estimates of composition from infrared measurements. However, the hydrogen content of hydrogenated amorphous silicon (a-Si : H) found by LIMA shows no correlation with values given by infrared absorption analysis. Explanations are proposed and discussed. © 1985.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The surface plasmon polariton mediated photoresponse from Al-GaAs diodes is examined in a prism-air gap-diode configuration as a function of both the wavelength of the incident light and thickness of the Al electrode. The experimental data shows a pronounced dip in reflectance as a function of internal angle of incidence in the prism, due to the excitation of the surface plasmon polariton at the Al-air interface, and a corresponding peak in device photosignal. Careful modelling of reflectance and quantum efficiency data shows that the bulk of the signal is generated by light which is re-radiated from this surface mode into the semiconductor substrate where it is absorbed by the creation of electron-hole pairs in the depletion region. This holds for all the wavelengths used here (all are shorter than the GaAs absorption edge) and across the thickness range of the Al electrodes (20-50 nm). Quantum efficiencies in the range 0.5-22% and enhancement factors of typically 7.5 were recorded in this investigation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A mathematical model describing the heat budget of an irradiated medium is introduced. The one-dimensional form of the equations and boundary conditions are presented and analysed. Heat transport at one face of the slab occurs by absorption (and reflection) of an incoming beam of short-wave radiation with a fraction of this radiation penetrating into the body of the slab, a diffusive heat flux in the slab and a prescribed incoming heat flux term. The other face of the slab is immersed in its own melt and is considered to be a free surface. Here, temperature continuity is prescribed and evolution of the surface is determined by a Stefan condition. These boundary conditions are flexible enough to describe a range of situations such as a laser shining on an opaque medium, or the natural environment of polar sea ice or lake ice. A two-stream radiation model is used which replaces the simple Beer’s law of radiation attenuation frequently used for semi-infinite domains. The stationary solutions of the governing equations are sought and it is found that there exists two possible stationary solutions for a given set of boundary conditions and a range of parameter choices. It is found that the existence of two stationary solutions is a direct result of the model of radiation absorption, due to its effect on the albedo of the medium. A linear stability analysis and numerical calculations indicate that where two stationary solutions exist, the solution corresponding to a larger thickness is always stable and the solution corresponding to a smaller thickness is unstable. Numerical simulations reveal that when there are two solutions, if the slab is thinner than the smaller stationary thickness it will melt completely, whereas if the slab is thicker than the smaller stationary thickness it will evolve toward the larger stationary thickness. These results indicate that other mechanisms (e.g. wave-induced agglomeration of crystals) are necessary to grow a slab from zero initial thickness in the parameter regime that yields two stationary solutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes two simple thermal methods for measuring the energy fluence in J/cm 2 from a diagnostic x-ray exposure. Both detectors absorb essentially 100% of the radiation and give a signal that is directly proportional to the energy fluence of the x-ray beam. One detector measures the thermal effect when a pulse of x rays is totally absorbed in the pyroelectric detector of lead-zirconium-titanate (PZT). The other detector measures the expansion of a gas surrounding a lead disk detector in a photoacoustic chamber. The increased pressure of the gas is transmitted through a 1-mm duct to a sensitive microphone. Both detectors have previously been used to measure the energy fluence rate of continuous x-ray beams in the same energy region using a chopped beam and a lock-in amplifier. Measurement of the energy fluence of a pulse of radiation eliminates the need for the beam chopper and lock-in amplifier and results in a simple, rugged, and inexpensive dosimeter. Either method can be combined with the area of the beam to give an estimate of the imparted energy to the patient from a diagnostic x-ray exposure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The TL, optical absorption (OA) and EPR properties of natural Brazilian alexandrite and chrysoberyl have been investigated. The TL measurements for natural alexandrite show five peaks between 100 and 450°C, with their emission spectrum having 370 and/or 570 nm components. The intensity of the 320°C TL peak was found to be enhanced with pre-annealing treatment, more prominently above 600°C. The OA and EPR measurements showed that this kind of heat treatment induces the Fe2→ Fe3+ conversion in the natural sample. Chrysoberyl samples exhibited the TL peaks at the same temperatures as alexandrite samples, but the glow curves were more than 200 times less intense than alexandrite ones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple and scalable procedure was used to obtain thin, stable, homogeneous, and easy-to-handle films composed of silicone derived from dimethicones containing dispersed hydrotalcite-type materials previously organo-modified with amino acids. The absence of the typical X-ray pattern of the bioinorganic LDH filler suggested an exfoliation process that was further indirectly evidenced by a drastic change in the rheological behavior, which turned from a quasi-Newtonian behavior for the silicone free of LDH filler to an extensive developed gel-like structure for the nanocomposite derivatives. Visualized by the shear-thinning exponent of the complex viscosity in the low-frequency range, the percolation threshold was evident for filler loading as low as <5 w/W%, suggesting the presence of a largely developed interface between the filler and the polymer. The increase of more than one order of magnitude in viscosity was explained by the rather strong attrition phenomenon between the tethered amino acid anions and the silicone chains. UVB radiation absorption profiles make such bioinorganic polymer nanocomposites potentially applicable in skin protection. Thermo-gravimetric analysis revealed significant improvement in the thermal stability, especially in the final step of the polymer combustion, thus underlining the role of the hybrid material as a thermal retardant agent. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trypanosoma cruzi is an organism highly resistant to ionizing radiation. Following a dose of 500 Gy of gamma radiation, the fragmented genomic DNA is gradually reconstructed and the pattern of chromosomal bands is restored in less than 48 hours. Cell growth arrests after irradiation but, while DNA is completely fragmented, RNA maintains its integrity. In this work we compared the transcriptional profiles of irradiated and non-irradiated epimastigotes at different time points after irradiation using microarray. In total, 273 genes were differentially expressed; from these, 160 were up-regulated and 113 down-regulated. We found that genes with predicted functions are the most prevalent in the down-regulated gene category. Translation and protein metabolic processes, as well as generation of precursor of metabolites and energy pathways were affected. In contrast, the up-regulated category was mainly composed of obsolete sequences (which included some genes of the kinetoplast DNA), genes coding for hypothetical proteins, and Retrotransposon Hot Spot genes. Finally, the tyrosyl-DNA phosphodiesterase 1, a gene involved in double-strand DNA break repair process, was up-regulated. Our study demonstrated the peculiar response to ionizing radiation, raising questions about how this organism changes its gene expression to manage such a harmful stress.