985 resultados para radial maze
Resumo:
Age-related cognitive impairments were studied in rats kept in semi-enriched conditions during their whole life, and tested during ontogeny and adult life in various classical spatial tasks. In addition, the effect of intrahippocampal grafts of fetal septal-diagonal band tissue, rich in cholinergic neurons, was studied in some of these subjects. The rats received bilateral cell suspensions when aged 23-24 months. Starting 4 weeks after grafting, they were trained during 5 weeks in an 8-arm maze made of connected plexiglass tunnels. No age-related impairment was detected during the first eight trials, when the maze shape was that of a classical radial maze in which the rats had already been trained when young. The older rats were impaired when the task was made more difficult by rendering two arms parallel to each other. They developed an important neglect of one of the parallel tunnels resulting in a high amount of errors before completion of the task. In addition, the old rats developed a systematic response pattern of visits to adjacent arms in a sequence, which was not observed in the younger subjects. None of these behaviours were observed in the old rats with a septal transplant. Sixteen weeks after grafting, another experiment was conducted in a homing hole board task. Rats were allowed to escape from a large circular arena through one hole out of many, and to reach home via a flexible tube under the table. The escape hole was at a fixed position according to distant room cues, and olfactory cues were made irrelevant by rotating the table between the trials. An additional cue was placed on the escape position. No age-related difference in escape was observed during training. During a probe trial with no hole connected and no proximal cue present, the old untreated rats were less clearly focussed on the training sector than were either the younger or the grafted old subjects. Taken together, these experiments indicate that enriched housing conditions and spatial training during adult life do not protect against all age-related deterioration in spatial ability. However, it might be that the considerable improvement observed in the grafted subjects results from an interaction between the graft treatment and the housing conditions.
Resumo:
Qualitative differences in strategy selection during foraging in a partially baited maze were assessed in young and old rats. The baited and non-baited arms were at a fixed position in space and marked by a specific olfactory cue. The senescent rats did more re-entries during the first four-trial block but were more rapid than the young rats in selecting the reinforced arms during the first visits. Dissociation between the olfactory spatial cue reference by rotating the maze revealed that only few old subjects relied on olfactory cues to select the baited arms and the remainder relied mainly on the visuo-spatial cues.
Resumo:
BACKGROUND: Radial maze tasks have been used to assess optimal foraging and spatial abilities in rodents. The spatial performance was based on a capacity to rely on a configuration of local and distant cues. We adapted maze procedures assessing the relative weight of local cues and distant landmarks for arm choice in humans. NEW METHOD: The procedure allowed testing memory of places in four experimental setups: a fingertip texture-groove maze, a tactile screen maze, a virtual radial maze and a walking size maze. During training, the four reinforced positions remained fixed relative to local and distal cues. During subsequent conflict trials, these frameworks were made conflictive in the prediction of reward locations. RESULTS: Three experiments showed that the relative weight of local and distal relational cues is affected by different factors such as cues' nature, visual access to the environment, real vs. virtual environment, and gender. A fourth experiment illustrated how a walking maze can be used with people suffering intellectual disability. COMPARISON WITH EXISTING METHODS: In our procedure, long-term (reference) and short-term (working) memory can be assessed. It is the first radial task adapted to human that enables dissociating local and distal cues, to provides an indication as to their relative salience. Our mazes are moveable and easily used in limited spaces. Tasks are performed with realistic and spontaneous though controlled exploratory movements. CONCLUSION: Our tasks enabled highlighting the use of different strategies. In a clinical perspective, considering the use of compensatory strategies should orient towards adapted behavioural rehabilitation.
Resumo:
The aim of the present study was to determine whether and how rats can use local olfactory cues for spatial orientation. Rats were trained in an eight-arm radial maze under different conditions as defined by the presence or absence of supplementary olfactory cues marking each arm, the availability of distant visuospatial information, and the illumination of the maze (light or darkness). The different visual conditions were designed to dissociate among the effects of light per se and those of visuospatial cues, on the use of olfactory cues for accurate arm choice. Different procedures with modifications of the arrangement of olfactory cues were used to determine if rats formed a representation of the spatial configuration of the olfactory cues and if they could rely on such a representation for accurate arm choice in the radial maze. The present study demonstrated that the use of olfactory cues to direct arm choice in the radial arm maze was critically dependent on the illumination conditions and implied two different modes of processing of olfactory information according to the presence or the absence of light. Olfactory cues were used in an explicit manner and enabled accurate arm choice only in the absence of light. Rats, however, had an implicit memory of the location of the olfactory cues and formed a representation of the spatial position of these cues, whatever the lighting conditions. They did not memorize the spatial configuration of the olfactory cues per se but needed these cues to be linked to the external spatial frame of reference.
Resumo:
Male and female Wistar rats were treated postnatally (PND 5-16) with BSO (l-buthionine-(S,R)-sulfoximine) to provide a rat model of schizophrenia based on transient glutathione deficit. In the watermaze, BSO-treated male rats perform very efficiently in conditions where a diversity of visual information is continuously available during orientation trajectories [1]. Our hypothesis is that the treatment impairs proactive strategies anticipating future sensory information, while supporting a tight visual adjustment on memorized snapshots, i.e. compensatory reactive strategies. To test this hypothesis, BSO rats' performance was assessed in two conditions using an 8-arm radial maze task: a semi-transparent maze with no available view on the environment from maze centre [2], and a modified 2-parallel maze known to induce a neglect of the parallel pair in normal rats [3-5]. Male rats, but not females, were affected by the BSO treatment. In the semi-transparent maze, BSO males expressed a higher error rate, especially in completing the maze after an interruption. In the 2-parallel maze shape, BSO males, unlike controls, expressed no neglect of the parallel arms. This second result was in accord with a reactive strategy using accurate memory images of the contextual environment instead of a representation based on integrating relative directions. These results are coherent with a treatment-induced deficit in proactive decision strategy based on multimodal cognitive maps, compensated by accurate reactive adaptations based on the memory of local configurations. Control females did not express an efficient proactive capacity in the semi-transparent maze, neither did they show the significant neglect of the parallel arms, which might have masked the BSO induced effect. Their reduced sensitivity to BSO treatment is discussed with regard to a sex biased basal cognitive style.
Resumo:
Glutathione (GSH) metabolism dysfunction is one risk factor in schizophrenia. A transitory brain GSH deficit was induced in Wistar (WIS) and mutant (ODS; lacking ascorbic acid synthesis) rats using BSO (l-buthionine-(S,R)-sulfoximine) from post-natal days 5-16. When GSH was re-established to physiological levels, juvenile BSO-ODS rats were impaired in the water maze task. Long after treatment cessation, adult BSO-WIS/-ODS rats showed impaired place discrimination in the homing board with distributed visual or olfactory cues. Their accuracy was restored when a single cue marked the trained position. Similarly, more working memory errors were made by adult BSO-WIS in the radial maze when several olfactory cues were present. These results reveal that BSO rats did not suffer simple sensory impairment. They were selectively impaired in spatial memory when the task required the integration of multimodal or olfactory cues. These results, in part, resemble some of the reported olfactory discrimination and cognitive impairment in schizophrenia.
Resumo:
THESIS ABSTRACTThis thesis project was aimed at studying the molecular mechanisms underlying learning and memory formation, in particular as they relate to the metabolic coupling between astrocytes and neurons. For that, changes in the metabolic activity of different mice brain regions after 1 or 9 days of training in an eight-arm radial maze were assessed by (14C) 2-deoxyglucose (2DG) autoradiography. Significant differences in the areas engaged during the behavioral task at day 1 (when animals are confronted for the first time to the learning task) and at day 9 (when animals are highly performing) have been identified. These areas include the hippocampus, the fornix, the parietal cortex, the laterodorsal thalamic nucleus and the mammillary bodies at day 1 ; and the anterior cingulate, the retrosplenial cortex and the dorsal striatum at day 9. Two of these cerebral regions (those presenting the greatest changes at day 1 and day 9: the hippocampus and the retrosplenial cortex, respectively) were microdissected by laser capture microscopy and selected genes related to neuron-glia metabolic coupling, glucose metabolism and synaptic plasticity were analyzed by RT-PCR. 2DG and gene expression analysis were performed at three different times: 1) immediately after the end of the behavioral paradigm, 2) 45 minutes and 3) 6 hours after training. The main goal of this study was the identification of the metabolic adaptations following the learning task. Gene expression results demonstrate that the learning task profoundly modulates the pattern of gene expression in time, meaning that these two cerebral regions with high 2DG signal (hippocampus and retrosplenial cortex) have adapted their metabolic molecular machinery in consequence. Almost all studied genes show a higher expression in the hippocampus at day 1 compared to day 9, while an increased expression was found in the retrosplenial cortex at day 9. We can observe these molecular adaptations with a short delay of 45 minutes after the end of the task. However, 6 hours after training a high gene expression was found at day 9 (compared to day 1) in both regions, suggesting that only one day of training is not sufficient to detect transcriptional modifications several hours after the task. Thus, gene expression data match 2DG results indicating a transfer of information in time (from day 1 to day 9) and in space (from the hippocampus to the retrosplenial cortex), and this at a cellular and a molecular level. Moreover, learning seems to modify the neuron-glia metabolic coupling, since several genes involved in this coupling are induced. These results also suggest a role of glia in neuronal plasticity.RESUME DU TRAVAIL DE THESECe projet de thèse a eu pour but l'étude des mécanismes moléculaires qui sont impliqués dans l'apprentissage et la mémoire et, en particulier, à les mettre en rapport avec le couplage métabolique existant entre les astrocytes et les neurones. Pour cela, des changements de l'activité métabolique dans différentes régions du cerveau des souris après 1 ou 9 jours d'entraînement dans un labyrinthe radial à huit-bras ont été évalués par autoradiographie au 2-désoxyglucose (2DG). Des différences significatives dans les régions engagées pendant la tâche comportementale au jour 1 (quand les animaux sont confrontés pour la première fois à la tâche) et au jour 9 (quand les animaux ont déjà appris) ont été identifiés. Ces régions incluent, au jour 1, l'hippocampe, le fornix, le cortex pariétal, le noyau thalamic laterodorsal et les corps mamillaires; et, au jour 9, le cingulaire antérieur, le cortex retrosplenial et le striatum dorsal. Deux de ces régions cérébrales (celles présentant les plus grands changements à jour 1 et à jour 9: l'hippocampe et le cortex retrosplenial, respectivement) ont été découpées par microdissection au laser et quelques gènes liés au couplage métabolique neurone-glie, au métabolisme du glucose et à la plasticité synaptique ont été analysées par RT-PCR. L'étude 2DG et l'analyse de l'expression de gènes ont été exécutés à trois temps différents: 1) juste après entraînement, 2) 45 minutes et 3) 6 heures après la fin de la tâche. L'objectif principal de cette étude était l'identification des adaptations métaboliques suivant la tâche d'apprentissage. Les résultats de l'expression de gènes démontrent que la tâche d'apprentissage module profondément le profile d'expression des gènes dans le temps, signifiant que ces deux régions cérébrales avec un signal 2DG élevé (l'hippocampe et le cortex retrosplenial) ont adapté leurs « machines moléculaires » en conséquence. Presque tous les gènes étudiés montrent une expression plus élevée dans l'hippocampe au jour 1 comparé au jour 9, alors qu'une expression accrue a été trouvée dans le cortex retrosplenial au jour 9. Nous pouvons observer ces adaptations moléculaires avec un retard court de 45 minutes après la fin de la tâche. Cependant, 6 heures après l'entraînement, une expression de gènes élevée a été trouvée au jour 9 (comparé à jour 1) dans les deux régions, suggérant que seulement un jour d'entraînement ne suffit pas pour détecter des modifications transcriptionelles plusieurs heures après la tâche. Ainsi, les données d'expression de gènes corroborent les résultats 2DG indiquant un transfert d'information dans le temps (de jour 1 à jour 9) et dans l'espace (de l'hippocampe au cortex retrosplenial), et ceci à un niveau cellulaire et moléculaire. D'ailleurs, la tâche d'apprentissage semble modifier le couplage métabolique neurone-glie, puisque de nombreux gènes impliqués dans ce couplage sont induits. Ces observations suggèrent un rôle important de la glie dans les mécanismes de plasticité du système nerveux.
Resumo:
Two spatial tasks were designed to test specific properties of spatial representation in rats. In the first task, rats were trained to locate an escape hole at a fixed position in a visually homogeneous arena. This arena was connected with a periphery where a full view of the room environment existed. Therefore, rats were dependent on their memory trace of the previous position in the periphery to discriminate a position within the central region. Under these experimental conditions, the test animals showed a significant discrimination of the training position without a specific local view. In the second task, rats were trained in a radial maze consisting of tunnels that were transparent at their distal ends only. Because the central part of the maze was non-transparent, rats had to plan and execute appropriate trajectories without specific visual feedback from the environment. This situation was intended to encourage the reliance on prospective memory of the non-visited arms in selecting the following move. Our results show that acquisition performance was only slightly decreased compared to that shown in a completely transparent maze and considerably higher than in a translucent maze or in darkness. These two series of experiments indicate (1) that rats can learn about the relative position of different places with no common visual panorama, and (2) that they are able to plan and execute a sequence of visits to several places without direct visual feed-back about their relative position.
Resumo:
Activation dynamics of hippocampal subregions during spatial learning and their interplay with neocortical regions is an important dimension in the understanding of hippocampal function. Using the (14C)-2-deoxyglucose autoradiographic method, we have characterized the metabolic changes occurring in hippocampal subregions in mice while learning an eight-arm radial maze task. Autoradiogram densitometry revealed a heterogeneous and evolving pattern of enhanced metabolic activity throughout the hippocampus during the training period and on recall. In the early stages of training, activity was enhanced in the CA1 area from the intermediate portion to the posterior end as well as in the CA3 area within the intermediate portion of the hippocampus. At later stages, CA1 and CA3 activations spread over the entire longitudinal axis, while dentate gyrus (DG) activation occurred from the anterior to the intermediate zone. Activation of the retrosplenial cortex but not the amygdala was also observed during the learning process. On recall, only DG activation was observed in the same anterior part of the hippocampus. These results suggest the existence of a functional segmentation of the hippocampus, each subregion being dynamically but also differentially recruited along the acquisition, consolidation, and retrieval process in parallel with some neocortical sites.
Resumo:
Rationale: Flavonoid-rich foods have been shown to be able to reverse age-related cognitive deficits in memory and learning in both animals and humans. However, to date, there have been only a limited number of studies investigating the effects of flavonoid-rich foods on cognition in young/healthy animals. Objectives: The aim of this study was to investigate the effects of a blueberry-rich diet in young animals using a spatial working memory paradigm, the delayed non-match task, using an eight-arm radial maze. Furthermore, the mechanisms underlying such behavioural effects were investigated. Results: We show that a 7-week supplementation with a blueberry diet (2 % w/w) improves the spatial memory performance of young rats (2 months old). Blueberry-fed animals also exhibited a faster rate of learning compared to those on the control diet. These behavioural outputs were accompanied by the activation of extracellular signal-related kinase (ERK1/2), increases in total cAMP-response element binding protein (CREB) and elevated levels of pro- and mature brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in hippocampal CREB correlated well with memory performance. Further regional analysis of BDNF gene expression in the hippocampus revealed a specific increase in BDNF mRNA in the dentate gyrus and CA1 areas of hippocampi of blueberry-fed animals. Conclusions: The present study suggests that consumption of flavonoid-rich blueberries has a positive impact on spatial learning performance in young healthy animals, and these improvements are linked to the activation of ERK–CREB– BDNF pathway in the hippocampus.
Resumo:
The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5–12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making
Resumo:
Behavioural tests to assess affective states are widely used in human research and have recently been extended to animals. These tests assume that affective state influences cognitive processing, and that animals in a negative affective state interpret ambiguous information as expecting a negative outcome (displaying a negative cognitive bias). Most of these tests however, require long discrimination training. The aim of the study was to validate an exploration based cognitive bias test, using two different handling methods, as previous studies have shown that standard tail handling of mice increases physiological and behavioural measures of anxiety compared to cupped handling. Therefore, we hypothesised that tail handled mice would display a negative cognitive bias. We handled 28 female CD-1 mice for 16 weeks using either tail handling or cupped handling. The mice were then trained in an eight arm radial maze, where two adjacent arms predicted a positive outcome (darkness and food), while the two opposite arms predicted a negative outcome (no food, white noise and light). After six days of training, the mice were also given access to the four previously unavailable intermediate ambiguous arms of the radial maze and tested for cognitive bias. We were unable to validate this test, as mice from both handling groups displayed a similar pattern of exploration. Furthermore, we examined whether maze exploration is affected by the expression of stereotypic behaviour in the home cage. Mice with higher levels of stereotypic behaviour spent more time in positive arms and avoided ambiguous arms, displaying a negative cognitive bias. While this test needs further validation, our results indicate that it may allow the assessment of affective state in mice with minimal training— a major confound in current cognitive bias paradigms.
Resumo:
Stereotypies are abnormal repetitive behaviour patterns that are highly prevalent in laboratory mice and are thought to reflect impaired welfare. Thus, they are associated with impaired behavioural inhibition and may also reflect negative affective states. However, in mice the relationship between stereotypies and behavioural inhibition is inconclusive, and reliable measures of affective valence are lacking. Here we used an exploration based task to assess cognitive bias as a measure of affective valence and a two-choice guessing task to assess recurrent perseveration as a measure of impaired behavioural inhibition to test mice with different forms and expression levels of stereotypic behaviour. We trained 44 CD- 1 and 40 C57BL/6 female mice to discriminate between positively and negatively cued arms in a radial maze and tested their responses to previously inaccessible ambiguous arms. In CD-1 mice (i) mice with higher stereotypy levels displayed a negative cognitive bias and this was influenced by the form of stereotypy performed, (ii) negative cognitive bias was evident in back-flipping mice, and (iii) no such effect was found in mice displaying bar-mouthing or cage-top twirling. In C57BL/6 mice neither route-tracing nor bar-mouthing was associated with cognitive bias, indicating that in this strain these stereotypies may not reflect negative affective states. Conversely, while we found no relation of stereotypy to recurrent perseveration in CD-1 mice, C57BL/6 mice with higher levels of route-tracing, but not bar-mouthing made more repetitive responses in the guessing task. Our findings confirm previous research indicating that the implications of stereotypies for animal welfare may strongly depend on the species and strain of animal as well as on the form and expression level of the stereotypy. Furthermore, they indicate that variation in stereotypic behaviour may represent an important source of variation in many animal experiments.
Resumo:
Based on clues from epidemiology, low prenatal vitamin D has been proposed as a candidate risk factor for schizophrenia. Recent animal experiments have demonstrated that transient prenatal vitamin D deficiency is associated with persistent alterations in brain morphology and neurotrophin expression. In order to explore the utility of the vitamin D animal model of schizophrenia, we examined different types of learning and memory in adult rats exposed to transient prenatal vitamin D deficiency. Compared to control animals, the prenatally deplete animals had a significant impairment of latent inhibition, a feature often associated with schizophrenia. In addition, the deplete group was (a) significantly impaired on hole board habituation and (b) significantly better at maintaining previously learnt rules of brightness discrimination in a Y-chamber. In contrast, the prenatally deplete animals showed no impairment on the spatial learning task in the radial maze, nor on two-way active avoidance learning in the shuttle-box. The results indicate that transient prenatal vitamin D depletion in the rat is associated with subtle and discrete alterations in learning and memory. The behavioural phenotype associated with this animal model may provide insights into the neurobiological correlates of the cognitive impairments of schizophrenia. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson's disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [(31)P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.