917 resultados para radial hydraulic conductivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unsaturated hydraulic conductivity of an Oxisol, using a neutron probe. The objective of this study was to determine the unsaturated hydraulic conductivity, using a neutron probe, of a clay sandy Oxisol. The Study was carried out in the city of Piracicaba, kite of Sao Paulo, Brazil (22 degrees 42` 43.3 `` S, 47 degrees`37` 10.4 `` W, 546 m). The dimensions of the experimental plot were 45 In x 15 m, in which 40 aluminum tubes were installed in order to access a neutron probe to measure the soil water content at the depths of 0.2, 0.4, 0.6, 0.8 and 1.0 m and, then, calculate the soil water storage of the 0 - 1.0 m soil layer. The distribution of these tubes was made in grids of four columns by ten rows in spacing of 5 x 5 m. The K(theta) functions were determined in the 40 points from regression analyses of theta as function Int and h(z) as a function of Int, being K the hydraulic conductivity, theta the volumetric soil water content, h(z) the soil water storage in the 0 - Z m layer, and t the soil water redistribution time. The neutron probe proved to be an efficient equipment in determining soil water contents, in the instantaneous profile method for determination of the K(theta) function in homogeneous soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The van Genuchten expressions for the unsaturated soil hydraulic properties, first published in 1980, are used frequently in various vadose zone flow and transport applications assuming a specific relationship between the m and n soil hydraulic parameters. By comparison, probably because of the complexity of the hydraulic conductivity equations, the more general solutions with independent m and n values are rarely used. We expressed the general van Genuchten-Mualem and van Genuchten-Burdine hydraulic conductivity equations in terms of hypergeometric functions, which can be approximated by infinite series that converge rapidly for relatively large values of the van Genuchten-Mualem parameter n but only very slowly when n is close to one. Alternative equations were derived that provide very close approximations of the analytical results. The newly proposed equations allow the use of independent values of the parameters m and n in the soil water retention model of van Genuchten for subsequent prediction of the van Genuchten-Mualem and van Genuchten-Burdine hydraulic conductivity models, thus providing more flexibility in fitting experimental pressure-head-dependent water content, theta(h), and hydraulic conductivity, K(h), or K(theta) data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polymer tensiometer is a novel instrument to measure soil water pressure heads from saturation to permanent wilting conditions. We used tensiometers of this type in an experiment to determine the hydraulic properties of evaporating soil samples in the laboratory. Relative errors in the hydraulic conductivity function in the wet part were high due to the relatively low accuracy of the pressure transducers, resulting in a large uncertainty in the hydraulic gradient and therefore in the calculated hydraulic conductivity. In the dry part, the error related to this accuracy was on the same order of magnitude as the error related to balance accuracy. Therefore, the method can be assumed adequate for measuring soil hydraulic properties except under very wet conditions. In our experiments, relative error and bias increased significantly at pressure heads less negative than -1 m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A software for the calculation of unsaturated soil hydraulic conductivity K(theta) is presented for commonly used methods found in the literature, based on field experiments in which a soil profile is submitted to water infiltration followed by internal drainage. The software is available at: dourado@esalq.usp.br.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptosols and Regosols are soils with a series of restrictions for use, mainly related to the effective depth, which have been poorly studied in Brazil. These soils, when derived from sedimentary rocks should be treated with particular care to avoid environmental damage such as aquifer contamination. The purpose of this study was to verify the behavior of hydraulic conductivity and water retention capacity in profiles of Leptosols and Regosols derived from sandstone of the Caturrita formation in Rio Grande do Sul state. The morphology, particle size distribution, porosity, soil density (Ds), saturated hydraulic conductivity (Ks), basic water infiltration in the field (BI) and water retention were determined in soil and saprolite samples of six soil profiles. High Ds, low macroporosity and high microporosity were observed in the profiles, resulting in a low Ks and BI, even under conditions of sandy texture and a highly fractured saprolite layer. The variation coefficients of data of Ks and BI were high among the studied profiles and between replications of a same profile. Water retention of the studied soils was higher in Cr layers than in the A horizons and the volume of plant-available water greater and variable among A horizons and Cr layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial unconsolidated sedimentary deposits, which host the bulk of the world's readily accessible groundwater resources. Here, we present the results of laboratory SIP measurements on industrial-grade, saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel, which can be regarded as proxies for widespread alluvial deposits. We altered the pore space characteristics by changing (i) the grain size spectra, (ii) the degree of compaction, and (iii) the level of sorting. We then examined how these changes affect the SIP response, the hydraulic conductivity, and the specific surface area of the considered samples. In general, the results indicate a clear connection between the SIP response and the granulometric as well as pore space characteristics. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the entire range of considered grain sizes. The results do, however, also indicate that the detailed nature of these relations depends strongly on variations in the pore space characteristics, such as, for example, the degree of compaction. The results of this study underline the complexity of the origin of the SIP signal as well as the difficulty to relate it to a single structural factor of a studied sample, and hence raise some fundamental questions with regard to the practical use of SIP measurements as site- and/or sample-independent predictors of the hydraulic conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed an upscaling procedure based on a Bayesian sequential simulation approach. This method is then applied to the stochastic integration of low-resolution, regional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this upscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potassium ion, present in great amount in the vinasse because it is a monovalent cation, has the characteristic of promoting the dispersion of clay particles, in the same way as the sodium, causing a reduction in the pore space of the soil and, in its turn, reducing its permeability. To evaluate this effect of reduction by application of vinasse to the soil, an experiment was conducted for three different soils, with the objective of evaluating the effect of the application of different doses of vinasse on hydraulic conductivity of saturated soil and verifying its possible chemical changes of these soils. For that, it was used PVC columns (in a scheme of constant head permeameter to obtain the values of hydraulic conductivity of saturated soil), filled with three soils - Dark Red Latosol (DRL), Purple Latosol (PL) and Eutrophic Red Nitossol (ERN) - , in which were applied four doses of vinasse (0, 150, 300 and 450m³ ha-1), distributed in a completely randomized design with a 3x4 factorial scheme with three replications. The results evidenced that only the Dark Red Latosol (DRL) showed a reduction in the values of hydraulic conductivity of saturated soil, and in front of the application of vinasse, up to 300m³ ha-1, it was observed an increase in the concentrations of potassium, calcium and cation exchange capacity (CEC) ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferralsols have high structural stability, although structural degradation has been observed to result from forest to tillage or pasture conversion. An experimental series of forest skidder passes in an east Amazonian natural forest was performed for testing the effects of mechanical stress during selective logging operations on a clay-rich Ferralsol under both dry and wet soil conditions. Distinct ruts formed up to 25 cm depth only under wet conditions. After nine passes the initially very low surface bulk density of between 0.69 and 0.80 g cm(-3) increased to 1.05 g cm(-3) in the wet soil and 0.92 g cm(-3) in the dry soil. Saturated hydraulic conductivities, initially > 250 mm h(-1), declined to a minimum of around 10 mm h(-1) in the wet soil after the first pass, and in the dry soil more gradually after nine passes. The contrasting response of bulk density and saturated hydraulic conductivity is explained by exposure of subsoil material at the base of the ruts where macrostructure rapidly deteriorated under wet conditions. We attribute the resultant moderately high hydraulic conductivities to the formation of stable microaggregates with fine sand to coarse silt textures. We conclude that the topsoil macrostructure of Ferralsols is subject to similar deterioration to that of Luvisols in temperate zones. The stable microstructure prevents marked compaction and decrease in hydraulic conductivity under wetter and more plastic soil conditions. However, typical tropical storms may regularly exceed the infiltration capacity of the deformed soils. In the deeper ruts water may concentrate and cause surface run-off, even in gently sloping areas. To avoid soil erosion, logging operations in sloping areas should therefore be restricted to dry soil conditions when rut formation is minimal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of zeolite amendment for enhanced sorption capacity on the consolidation behavior and hydraulic conductivity, k, of a typical soil-bentonite (SB) backfill for vertical cutoff walls was evaluated via laboratory testing. The consolidation behavior and k of test specimens containing fine sand, 5.8 % (dry wt.) sodium bentonite, and 0, 2, 5, or 10 % (dry wt.) of one of three types of zeolite (clinoptilolite, chabazite-lower bed, or chabazite-upper bed) were measured using fixed-ring oedometers, and k also was measured on separate specimens using a flexible-wall permeameter. The results indicated that addition of a zeolite had little impact on either the consolidation behavior or the k of the backfill, regardless of the amount or type of zeolite. For example, the compression index, Cc, for the unamended backfill specimen was 0.24, whereas values of Cc for the zeolite amended specimens were in the range 0.19 ≤ Cc ≤ 0.23. Similarly, the k for the unamended specimen based on flexible-wall tests was 2.4 x 10-10 m/s, whereas values of k for zeolite amended specimens were in the range 1.2 x 10-10 ≤ k ≤ 3.9 x 10-10 m/s. The results of the study suggest that enhancing the sorption capacity of typical SB backfills via zeolite amendment is not likely to have a significant effect on the consolidation behavior or k of the backfill, provided that the amount of zeolite added is small (≤ 10 %).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential for changes in hydraulic conductivity, k, of two model soil-bentonite (SB) backfills subjected to wet-dry cycling was investigated. The backfills were prepared with the same base soil (clean, fine sand) but different bentonite contents (2.7 and 5.6 dry wt %). Saturation (S), volume change, and k of consolidated backfill specimens (effective stress = 24 kPa) were evaluated over three to seven cycles in which the matric suction, Ym, in the drying stage ranged from 50 to 700 kPa. Both backfills exhibited susceptibility to degradation in k caused by wet-dry cycling. Mean values of k for specimens dried at Ym = 50 kPa (S = 30-60 % after drying) remained low after two cycles, but increased by 5- to 300-fold after three or more cycles. Specimens dried at Ym ≥ 150 kPa (S < 30 % after drying) were less resilient and exhibited 500- to 10 000-fold increases in k after three or more cycles. The greater increases in k for these specimens correlated with greater vertical shrinkage upon drying. The findings suggest that increases in hydraulic conductivity due to wet-dry cycling may be a concern for SB vertical barriers located within the zone of a fluctuating groundwater table.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infiltration is dominantly gravity driven, and a viscous-flow approach was developed. Laminar film flow equilibrates gravity with the viscous force and a constant flow velocity evolves during a period lasting 3/2 times the duration of a constant input rate, qS. Film thickness F and the specific contact area L of the film per unit soil volume are the key parameters. Sprinkler irrigation produced in situ time series of volumetric water contents, θ(z,t), as determined with TDR probes. The wetting front velocity v and the time series of the mobile water content, w(z,t) were deduced from θ(z,t). In vitro steady flow in a core of saturated soil provided volume flux density, q(z,t), and flow velocity, v, as determined from a heat front velocity. The F and L parameters of the in situ and the in vitro experiments were compared. The macropore-flow restriction states that, for a particular permeable medium, the specific contact area L must be independent from qS i.e., dL/dqS = 0. If true, then the relationship of qS ∝ v3/2 could scale a wide range of input rates 0 ≤ qS ≤ saturated hydraulic conductivity, Ksat, into a permeable medium, and kinematic-wave theory would become a versatile tool to deal with non-equilibrium flow. The viscous-flow approach is based on hydromechanical principles similar to Darcy’s law, but currently it is not suited to deduce flow properties from specified individual spatial structures of permeable media.