989 resultados para radial diffuser flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work are presented results from numerical simulations performed with the ANSYS-CFX (R) code. We have studied a radial diffuser flow case, which is the main academic problem used to study the flow behavior on flat plate valves. The radial flow inside the diffuser has important behavior such as the turbulence decay downstream and recirculation regions inside the valve flow channel due to boundary layer detachment. These flow structures are present in compressor reed valve configurations, influencing to a greater extent the compressor efficiency. The main target of the present paper was finding the simulation set-up (computational domain, boundary conditions and turbulence model) that better fits with experimental data published by Tabatabai and Pollard. The local flow turbulence and velocity profiles were investigated using four different turbulence models, two different boundary conditions set-up, two different computational domains and three different flow conditions (Re-in - Reynolds number at the diffuser inlet). We used the Reynolds stress (BSL); the k-epsilon; the RNG k-epsilon; and the shear stress transport (SST) k-omega turbulence models. The performed analysis and comparison of the computational results with experimental data show that the choice of the turbulence model, as well as the choice of the other computational conditions, plays an important role in the results physical quality and accuracy. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of blown jet vortex generators to control flow separation in a diffuser with an opening angle of 10° has been studied using the computational fluid dynamics (CFD) code Fluent 6™. Experimental data is available for the uncontrolled flow in the diffuser. The section of the duct upstream of the diffuser has a height H equal to 15 mm; its length and breadth are 101H and 41H respectively; the diffuser has an expansion ratio of 4.7:1. Fully developed flow is achieved upstream of the diffuser. Pipes of diameters equal to 1.5%, 2.5% and 5% of H were considered; pitch angle was constant at 45° and yaw angle was fixed at 60°; velocity ratio was varied from 1.7 to 8.0; both co-rotating and counter-rotating arrays were studied. The best results were obtained with a counter-rotating array of generators with a hole diameter of 5% of H and a velocity ratio of 3.7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract-Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art Banged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air Bow to be reduced and provide a means of identifying and assessing the various parameters that control the air Bow. The mathematical model is formulated in terms of the Stokes steam function, ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained Bow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions. | Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art flanged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air flow to be reduced and provide a means of identifying and assessing the various parameters that control the air flow. The mathematical model is formulated in terms of the Stokes steam function, Ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained flow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Guidelines recommend the creation of a wrist radiocephalic arteriovenous fistula (RAVF) as initial hemodialysis vascular access. This study explored the potential of preoperative ultrasound vessel measurements to predict AVF failure to mature (FTM) in a cohort of patients with end-stage renal disease in Northern Ireland

.Methods: A retrospective analysis was performed of all patients who had preoperative ultrasound mapping of upper limb blood vessels carried out from August 2011 to December 2014 and whose AVF reached a functional outcome by March 2015.

Results: There were 152 patients (97% white) who had ultrasound mapping andan AVF functional outcome recorded; 80 (54%) had an upper arm AVF created, and 69 (46%) had a RAVF formed. Logistic regression revealed that female gender (odds ratio [OR], 2.5; 95% confidence interval [CI], 1.12-5.55; P = .025), minimum venous diameter (OR, 0.6; 95% CI, 0.39-0.95; P = .029), and RAVF (OR, 0.4; 95% CI, 0.18-0.89; P = .026) were associated with FTM. On subgroup analysis of the RAVF group, RAVFs with an arterial volume flow <50 mL/min were seven times as likely to fail as RAVFs with higher volume flows (OR, 7.0; 95% CI, 2.35-20.87; P < .001).

Conclusions: In this cohort, a radial artery flow rate <50 mL/min was associated with a sevenfold increased risk of FTM in RAVF, which to our knowledge has not been previously reported in the literature. Preoperative ultrasound mapping adds objective assessment in the clinical prediction of AVF FTM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of the present work is to verify the applicability of the Immersed Boundary Method together with the Virtual Physical Model to solve the flow through automatic valves of hermetic compressors. The valve was simplified to a two-dimensional radial diffuser, with diameter ratio of D/d = 1.5, and simulated for a one cycle of opening and closing process with a imposed velocity of 3.0 cm/s for the reed, dimensionless gap between disks in the range of 0.07 < s/d < 0.10, and inlet Reynolds number equal to 1500. The good results obtained showed that the methodology has great potential as project tool for this type of valve systems. © The Authors, 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A vertical jet of water impinging on a horizontal surface produces a radial film flow followed by a circular hydraulic jump. We report a phenomenon where fairly large (1 mi) drops of liquid levitate just upstream of the jump on a thin air layer between the drop and the film flow. We explain the phenomenon using lubrication theory. Bearing action both in the air film and the water film seems to be necessary to support large drops. Horizontal support is given to the drop by the hydraulic jump. A variety of drop shapes is observed depending on the volume of the drop and liquid properties. We show that interaction of the forces due to gravity, surface tension, viscosity and inertia produces these various shapes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)