11 resultados para rétrodiffusion
Resumo:
L’agrégation érythrocytaire est le principal facteur responsable des propriétés non newtoniennes sanguines pour des conditions d’écoulement à faible cisaillement. Lorsque les globules rouges s’agrègent, ils forment des rouleaux et des structures tridimensionnelles enchevêtrées qui font passer la viscosité sanguine de quelques mPa.s à une centaine de mPa.s. Cette organisation microstructurale érythrocytaire est maintenue par des liens inter-globulaires de faible énergie, lesquels sont brisés par une augmentation du cisaillement. Ces propriétés macroscopiques sont bien connues. Toutefois, les liens étiologiques entre ces propriétés rhéologiques générales et leurs effets pathophysiologiques demeurent difficiles à évaluer in vivo puisque les propriétés sanguines sont dynamiques et fortement tributaires des conditions d’écoulement. Ainsi, à partir de propriétés rhéologiques mesurées in vitro dans des conditions contrôlées, il devient difficile d’extrapoler leurs valeurs dans un environnement physiologique. Or, les thrombophlébites se développent systématiquement en des loci particuliers du système cardiovasculaire. D’autre part, plusieurs études cliniques ont établi que des conditions hémorhéologiques perturbées constituent des facteurs de risque de thrombose veineuse mais leurs contributions étiologiques demeurent hypothétiques ou corrélatives. En conséquence, un outil de caractérisation hémorhéologique applicable in vivo et in situ devrait permettre de mieux cerner et comprendre ces implications. Les ultrasons, qui se propagent dans les tissus biologiques, sont sensibles à l’agrégation érythrocytaire. De nature non invasive, l’imagerie ultrasonore permet de caractériser in vivo et in situ la microstructure sanguine dans des conditions d’écoulements physiologiques. Les signaux ultrasonores rétrodiffusés portent une information sur la microstructure sanguine reflétant directement les perturbations hémorhéologiques locales. Une cartographie in vivo de l’agrégation érythrocytaire, unique aux ultrasons, devrait permettre d’investiguer les implications étiologiques de l’hémorhéologie dans la maladie thrombotique vasculaire. Cette thèse complète une série de travaux effectués au Laboratoire de Biorhéologie et d’Ultrasonographie Médicale (LBUM) du centre de recherche du Centre hospitalier de l’Université de Montréal portant sur la rétrodiffusion ultrasonore érythrocytaire et menant à une application in vivo de la méthode. Elle se situe à la suite de travaux de modélisation qui ont mis en évidence la pertinence d’un modèle particulaire tenant compte de la densité des globules rouges, de la section de rétrodiffusion unitaire d’un globule et du facteur de structure. Ce modèle permet d’établir le lien entre la microstructure sanguine et le spectre fréquentiel du coefficient de rétrodiffusion ultrasonore. Une approximation au second ordre en fréquence du facteur de structure est proposée dans ces travaux pour décrire la microstructure sanguine. Cette approche est tout d’abord présentée et validée dans un champ d’écoulement cisaillé homogène. Une extension de la méthode en 2D permet ensuite la cartographie des propriétés structurelles sanguines en écoulement tubulaire par des images paramétriques qui mettent en évidence le caractère temporel de l’agrégation et la sensibilité ultrasonore à ces phénomènes. Une extrapolation menant à une relation entre la taille des agrégats érythrocytaires et la viscosité sanguine permet l’établissement de cartes de viscosité locales. Enfin, il est démontré, à l’aide d’un modèle animal, qu’une augmentation subite de l’agrégation érythrocytaire provoque la formation d’un thrombus veineux. Le niveau d’agrégation, la présence du thrombus et les variations du débit ont été caractérisés, dans cette étude, par imagerie ultrasonore. Nos résultats suggèrent que des paramètres hémorhéologiques, préférablement mesurés in vivo et in situ, devraient faire partie du profil de risque thrombotique.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
La compréhension et la modélisation de l’interaction de l’onde électromagnétique avec la neige sont très importantes pour l’application des technologies radars à des domaines tels que l’hydrologie et la climatologie. En plus de dépendre des propriétés de la neige, le signal radar mesuré dépendra aussi des caractéristiques du capteur et du sol. La compréhension et la quantification des différents processus de diffusion du signal dans un couvert nival s’effectuent à travers les théories de diffusions de l’onde électromagnétique. La neige, dans certaines conditions, peut être considérée comme un milieu dense lorsque les particules de glace qui la composent y occupent une fraction volumique considérable. Dans un tel milieu, les processus de diffusion par les particules ne se font plus de façon indépendante, mais de façon cohérente. L’approximation quasi-cristalline pour les milieux denses est une des théories élaborées afin de prendre en compte ces processus de diffusions cohérents. Son apport a été démontré dans de nombreuses études pour des fréquences > 10 GHz où l’épaisseur optique de la neige est importante et où la diffusion de volume est prédominante. Par contre, les capteurs satellitaires radar présentement disponibles utilisent les bandes L (1-2GHz), C (4-8GHz) et X (8-12GHz), à des fréquences principalement en deçà des 10 GHz. L’objectif de la présente étude est d’évaluer l’apport du modèle de diffusion issu de l’approximation quasi-cristalline pour les milieux denses (QCA/DMRT) dans la modélisation de couverts de neige sèches en bandes C et X. L’approche utilisée consiste à comparer la modélisation de couverts de neige sèches sous QCA/DMRT à la modélisation indépendante sous l’approximation de Rayleigh. La zone d’étude consiste en deux sites localisés sur des milieux agricoles, près de Lévis au Québec. Au total 9 champs sont échantillonnés sur les deux sites afin d’effectuer la modélisation. Dans un premier temps, une analyse comparative des paramètres du transfert radiatif entre les deux modèles de diffusion a été effectuée. Pour des paramètres de cohésion inférieurs à 0,15 à des fractions volumiques entre 0,1 et 0,3, le modèle QCA/DMRT présentait des différences par rapport à Rayleigh. Un coefficient de cohésion optimal a ensuite été déterminé pour la modélisation d’un couvert nival en bandes C et X. L’optimisation de ce paramètre a permis de conclure qu’un paramètre de cohésion de 0,1 était optimal pour notre jeu de données. Cette très faible valeur de paramètre de cohésion entraîne une augmentation des coefficients de diffusion et d’extinction pour QCA/DMRT ainsi que des différences avec les paramètres de Rayleigh. Puis, une analyse de l’influence des caractéristiques du couvert nival sur les différentes contributions du signal est réalisée pour les 2 bandes C et X. En bande C, le modèle de Rayleigh permettait de considérer la neige comme étant transparente au signal à des angles d’incidence inférieurs à 35°. Vu l’augmentation de l’extinction du signal sous QCA/DMRT, le signal en provenance du sol est atténué d’au moins 5% sur l’ensemble des angles d’incidence, à de faibles fractions volumiques et fortes tailles de grains de neige, nous empêchant ainsi de considérer la transparence de la neige au signal micro-onde sous QCA/DMRT en bande C. En bande X, l’augmentation significative des coefficients de diffusion par rapport à la bande C, ne nous permet plus d’ignorer l’extinction du signal. La part occupée par la rétrodiffusion de volume peut dans certaines conditions, devenir la part prépondérante dans la rétrodiffusion totale. Pour terminer, les résultats de la modélisation de couverts de neige sous QCA/DMRT sont validés à l’aide de données RADARSAT-2 et TerraSAR-X. Les deux modèles présentaient des rétrodiffusions totales semblables qui concordaient bien avec les données RADARSAT-2 et TerraSAR-X. Pour RADARSAT-2, le RMSE du modèle QCA/DMRT est de 2,52 dB en HH et 2,92 dB en VV et pour Rayleigh il est de 2,64 dB en HH et 3,01 dB en VV. Pour ce qui est de TerraSAR-X, le RMSE du modèle QCA/DMRT allait de 1,88 dB en HH à 2,32 dB en VV et de 2,20 dB en HH à 2,71 dB en VV pour Rayleigh. Les valeurs de rétrodiffusion totales des deux modèles sont assez similaires. Par contre, les principales différences entre les deux modèles sont bien évidentes dans la répartition des différentes contributions de cette rétrodiffusion totale.
Resumo:
Les siliciures métalliques constituent un élément crucial des contacts électriques des transistors que l'on retrouve au coeur des circuits intégrés modernes. À mesure qu'on réduit les dimensions de ces derniers apparaissent de graves problèmes de formation, liés par exemple à la limitation des processus par la faible densité de sites de germination. L'objectif de ce projet est d'étudier les mécanismes de synthèse de siliciures métalliques à très petite échelle, en particulier le NiSi, et de déterminer l’effet de l’endommagement du Si par implantation ionique sur la séquence de phase. Nous avons déterminé la séquence de formation des différentes phases du système Ni-Si d’échantillons possédant une couche de Si amorphe sur lesquels étaient déposés 10 nm de Ni. Celle-ci a été obtenue à partir de mesures de diffraction des rayons X résolue en temps et, pour des échantillons trempés à des températures critiques du processus, l’identité des phases et la composition et la microstructure ont été déterminées par mesures de figures de pôle, spectrométrie par rétrodiffusion Rutherford et microscopie électronique en transmission (TEM). Nous avons constaté que pour environ la moitié des échantillons, une réaction survenait spontanément avant le début du recuit thermique, le produit de la réaction étant du Ni2Si hexagonal, une phase instable à température de la pièce, mélangée à du NiSi. Dans de tels échantillons, la température de formation du NiSi, la phase d’intérêt pour la microélectronique, était significativement abaissée.
Resumo:
Résumé Dans la présente thèse, nous avons étudié la déformation anisotrope par bombardement ionique de nanoparticules d'or intégrées dans une matrice de silice amorphe ou d'arséniure d’aluminium cristallin. On s’est intéressé à la compréhension du mécanisme responsable de cette déformation pour lever toute ambigüité quant à l’explication de ce phénomène et pour avoir une interprétation consistante et unique. Un procédé hybride combinant la pulvérisation et le dépôt chimique en phase vapeur assisté par plasma a été utilisé pour la fabrication de couches nanocomposites Au/SiO2 sur des substrats de silice fondue. Des structures à couches simples et multiples ont été obtenues. Le chauffage pendant ou après le dépôt active l’agglomération des atomes d’Au et par conséquent favorise la croissance des nanoparticules. Les nanocomposites Au/AlAs ont été obtenus par implantation ionique de couches d’AlAs suivie de recuit thermique rapide. Les échantillons des deux nanocomposites refroidis avec de l’azote liquide ont été irradiés avec des faisceaux de Cu, de Si, d’Au ou d’In d’énergie allant de 2 à 40 MeV, aux fluences s'étendant de 1×1013 à 4×1015 ions/cm2, en utilisant le Tandem ou le Tandetron. Les propriétés structurales et morphologiques du nanocomposite Au/SiO2 sont extraites en utilisant des techniques optiques car la fréquence et la largeur de la résonance plasmon de surface dépendent de la forme et de la taille des nanoparticules, de leur concentration et de la distance qui les séparent ainsi que des propriétés diélectriques du matériau dans lequel les particules sont intégrées. La cristallinité de l’arséniure d’aluminium est étudiée par deux techniques: spectroscopie Raman et spectrométrie de rétrodiffusion Rutherford en mode canalisation (RBS/canalisation). La quantité d’Au dans les couches nanocomposites est déduite des résultats RBS. La distribution de taille et l’étude de la transformation de forme des nanoparticules métalliques dans les deux nanocomposites sont déterminées par microscopie électronique en transmission. Les résultats obtenus dans le cadre de ce travail ont fait l’objet de trois articles de revue. La première publication montre la possibilité de manipuler la position spectrale et la largeur de la bande d’absorption des nanoparticules d’or dans les nanocomposites Au/SiO2 en modifiant leur structure (forme, taille et distance entre particules). Les nanoparticules d’Au obtenues sont presque sphériques. La bande d’absorption plasmon de surface (PS) correspondante aux particules distantes est située à 520 nm. Lorsque la distance entre les particules est réduite, l’interaction dipolaire augmente ce qui élargit la bande de PS et la déplace vers le rouge (602 nm). Après irradiation ionique, les nanoparticules sphériques se transforment en ellipsoïdes alignés suivant la direction du faisceau. La bande d’absorption se divise en deux bandes : transversale et longitudinale. La bande correspondante au petit axe (transversale) est décalée vers le bleu et celle correspondante au grand axe (longitudinale) est décalée vers le rouge indiquant l’élongation des particules d’Au dans la direction du faisceau. Le deuxième article est consacré au rôle crucial de la déformation plastique de la matrice et à l’importance de la mobilité des atomes métalliques dans la déformation anisotrope des nanoparticules d’Au dans les nanocomposites Au/SiO2. Nos mesures montrent qu'une valeur seuil de 2 keV/nm (dans le pouvoir d'arrêt électronique) est nécessaire pour la déformation des nanoparticules d'or. Cette valeur est proche de celle requise pour la déformation de la silice. La mobilité des atomes d’Au lors du passage d’ions est confirmée par le calcul de la température dans les traces ioniques. Le troisième papier traite la tentative de formation et de déformation des nanoparticules d’Au dans une matrice d’arséniure d’aluminium cristallin connue pour sa haute résistance à l’amorphisation et à la déformation sous bombardement ionique. Le résultat principal de ce dernier article confirme le rôle essentiel de la matrice. Il s'avère que la déformation anisotrope du matériau environnant est indispensable pour la déformation des nanoparticules d’or. Les résultats expérimentaux mentionnés ci-haut et les calculs de températures dans les traces ioniques nous ont permis de proposer le scénario de déformation anisotrope des nanoparticules d’Au dans le nanocomposite Au/SiO2 suivant: - Chaque ion traversant la silice fait fondre brièvement un cylindre étroit autour de sa trajectoire formant ainsi une trace latente. Ceci a été confirmé par la valeur seuil du pouvoir d’arrêt électronique. - L’effet cumulatif des impacts de plusieurs ions conduit à la croissance anisotrope de la silice qui se contracte dans la direction du faisceau et s’allonge dans la direction perpendiculaire. Le modèle de chevauchement des traces ioniques (overlap en anglais) a été utilisé pour valider ce phénomène. - La déformation de la silice génère des contraintes qui agissent sur les nanoparticules dans les plans perpendiculaires à la trajectoire de l’ion. Afin d’accommoder ces contraintes les nanoparticules d’Au se déforment dans la direction du faisceau. - La déformation de l’or se produit lorsqu’il est traversé par un ion induisant la fusion d’un cylindre autour de sa trajectoire. La mobilité des atomes d’or a été confirmée par le calcul de la température équivalente à l’énergie déposée dans le matériau par les ions incidents. Le scénario ci-haut est compatible avec nos données expérimentales obtenues dans le cas du nanocomposite Au/SiO2. Il est appuyé par le fait que les nanoparticules d’Au ne se déforment pas lorsqu’elles sont intégrées dans l’AlAs résistant à la déformation.
Resumo:
Cette étude vise à tester la pertinence des images RSO - de moyenne et de haute résolution - à la caractérisation des types d’occupation du sol en milieu urbain. Elle s’est basée sur des approches texturales à partir des statistiques de deuxième ordre. Plus spécifiquement, on recherche les paramètres de texture les plus pertinents pour discriminer les objets urbains. Il a été utilisé à cet égard des images Radarsat-1 en mode fin en polarisation HH et Radarsat-2 en mode fin en double et quadruple polarisation et en mode ultrafin en polarisation HH. Les occupations du sol recherchées étaient le bâti dense, le bâti de densité moyenne, le bâti de densité faible, le bâti industriel et institutionnel, la végétation de faible densité, la végétation dense et l’eau. Les neuf paramètres de textures analysés ont été regroupés, en familles selon leur définition mathématique. Les paramètres de ressemblance/dissemblance regroupent l’Homogénéité, le Contraste, la Similarité et la Dissimilarité. Les paramètres de désordre sont l’Entropie et le Deuxième Moment Angulaire. L’Écart-Type et la Corrélation sont des paramètres de dispersion et la Moyenne est une famille à part. Il ressort des expériences que certaines combinaisons de paramètres de texture provenant de familles différentes utilisés dans les classifications donnent de très bons résultants alors que d’autres associations de paramètres de texture de définition mathématiques proches génèrent de moins bons résultats. Par ailleurs on constate que si l’utilisation de plusieurs paramètres de texture améliore les classifications, la performance de celle-ci plafonne à partir de trois paramètres. Malgré la bonne performance de cette approche basée sur la complémentarité des paramètres de texture, des erreurs systématiques dues aux effets cardinaux subsistent sur les classifications. Pour pallier à ce problème, il a été développé un modèle de compensation radiométrique basé sur la section efficace radar (SER). Une simulation radar à partir du modèle numérique de surface du milieu a permis d'extraire les zones de rétrodiffusion des bâtis et d'analyser les rétrodiffusions correspondantes. Une règle de compensation des effets cardinaux fondée uniquement sur les réponses des objets en fonction de leur orientation par rapport au plan d'illumination par le faisceau du radar a été mise au point. Des applications de cet algorithme sur des images RADARSAT-1 et RADARSAT-2 en polarisations HH, HV, VH, et VV ont permis de réaliser de considérables gains et d’éliminer l’essentiel des erreurs de classification dues aux effets cardinaux.
Resumo:
Les milieux humides remplissent plusieurs fonctions écologiques d’importance et contribuent à la biodiversité de la faune et de la flore. Même s’il existe une reconnaissance croissante sur l’importante de protéger ces milieux, il n’en demeure pas moins que leur intégrité est encore menacée par la pression des activités humaines. L’inventaire et le suivi systématique des milieux humides constituent une nécessité et la télédétection est le seul moyen réaliste d’atteindre ce but. L’objectif de cette thèse consiste à contribuer et à améliorer la caractérisation des milieux humides en utilisant des données satellites acquises par des radars polarimétriques en bande L (ALOS-PALSAR) et C (RADARSAT-2). Cette thèse se fonde sur deux hypothèses (chap. 1). La première hypothèse stipule que les classes de physionomies végétales, basées sur la structure des végétaux, sont plus appropriées que les classes d’espèces végétales car mieux adaptées au contenu informationnel des images radar polarimétriques. La seconde hypothèse stipule que les algorithmes de décompositions polarimétriques permettent une extraction optimale de l’information polarimétrique comparativement à une approche multipolarisée basée sur les canaux de polarisation HH, HV et VV (chap. 3). En particulier, l’apport de la décomposition incohérente de Touzi pour l’inventaire et le suivi de milieux humides est examiné en détail. Cette décomposition permet de caractériser le type de diffusion, la phase, l’orientation, la symétrie, le degré de polarisation et la puissance rétrodiffusée d’une cible à l’aide d’une série de paramètres extraits d’une analyse des vecteurs et des valeurs propres de la matrice de cohérence. La région du lac Saint-Pierre a été sélectionnée comme site d’étude étant donné la grande diversité de ses milieux humides qui y couvrent plus de 20 000 ha. L’un des défis posés par cette thèse consiste au fait qu’il n’existe pas de système standard énumérant l’ensemble possible des classes physionomiques ni d’indications précises quant à leurs caractéristiques et dimensions. Une grande attention a donc été portée à la création de ces classes par recoupement de sources de données diverses et plus de 50 espèces végétales ont été regroupées en 9 classes physionomiques (chap. 7, 8 et 9). Plusieurs analyses sont proposées pour valider les hypothèses de cette thèse (chap. 9). Des analyses de sensibilité par diffusiogramme sont utilisées pour étudier les caractéristiques et la dispersion des physionomies végétales dans différents espaces constitués de paramètres polarimétriques ou canaux de polarisation (chap. 10 et 12). Des séries temporelles d’images RADARSAT-2 sont utilisées pour approfondir la compréhension de l’évolution saisonnière des physionomies végétales (chap. 12). L’algorithme de la divergence transformée est utilisé pour quantifier la séparabilité entre les classes physionomiques et pour identifier le ou les paramètres ayant le plus contribué(s) à leur séparabilité (chap. 11 et 13). Des classifications sont aussi proposées et les résultats comparés à une carte existante des milieux humide du lac Saint-Pierre (14). Finalement, une analyse du potentiel des paramètres polarimétrique en bande C et L est proposé pour le suivi de l’hydrologie des tourbières (chap. 15 et 16). Les analyses de sensibilité montrent que les paramètres de la 1re composante, relatifs à la portion dominante (polarisée) du signal, sont suffisants pour une caractérisation générale des physionomies végétales. Les paramètres des 2e et 3e composantes sont cependant nécessaires pour obtenir de meilleures séparabilités entre les classes (chap. 11 et 13) et une meilleure discrimination entre milieux humides et milieux secs (chap. 14). Cette thèse montre qu’il est préférable de considérer individuellement les paramètres des 1re, 2e et 3e composantes plutôt que leur somme pondérée par leurs valeurs propres respectives (chap. 10 et 12). Cette thèse examine également la complémentarité entre les paramètres de structure et ceux relatifs à la puissance rétrodiffusée, souvent ignorée et normalisée par la plupart des décompositions polarimétriques. La dimension temporelle (saisonnière) est essentielle pour la caractérisation et la classification des physionomies végétales (chap. 12, 13 et 14). Des images acquises au printemps (avril et mai) sont nécessaires pour discriminer les milieux secs des milieux humides alors que des images acquises en été (juillet et août) sont nécessaires pour raffiner la classification des physionomies végétales. Un arbre hiérarchique de classification développé dans cette thèse constitue une synthèse des connaissances acquises (chap. 14). À l’aide d’un nombre relativement réduit de paramètres polarimétriques et de règles de décisions simples, il est possible d’identifier, entre autres, trois classes de bas marais et de discriminer avec succès les hauts marais herbacés des autres classes physionomiques sans avoir recours à des sources de données auxiliaires. Les résultats obtenus sont comparables à ceux provenant d’une classification supervisée utilisant deux images Landsat-5 avec une exactitude globale de 77.3% et 79.0% respectivement. Diverses classifications utilisant la machine à vecteurs de support (SVM) permettent de reproduire les résultats obtenus avec l’arbre hiérarchique de classification. L’exploitation d’une plus forte dimensionalitée par le SVM, avec une précision globale maximale de 79.1%, ne permet cependant pas d’obtenir des résultats significativement meilleurs. Finalement, la phase de la décomposition de Touzi apparaît être le seul paramètre (en bande L) sensible aux variations du niveau d’eau sous la surface des tourbières ouvertes (chap. 16). Ce paramètre offre donc un grand potentiel pour le suivi de l’hydrologie des tourbières comparativement à la différence de phase entre les canaux HH et VV. Cette thèse démontre que les paramètres de la décomposition de Touzi permettent une meilleure caractérisation, de meilleures séparabilités et de meilleures classifications des physionomies végétales des milieux humides que les canaux de polarisation HH, HV et VV. Le regroupement des espèces végétales en classes physionomiques est un concept valable. Mais certaines espèces végétales partageant une physionomie similaire, mais occupant un milieu différent (haut vs bas marais), ont cependant présenté des différences significatives quant aux propriétés de leur rétrodiffusion.
Resumo:
Le travail a été réalisé en collaboration avec le laboratoire de mécanique acoustique de Marseille, France. Les simulations ont été menées avec les langages Matlab et C. Ce projet s'inscrit dans le champ de recherche dénommé caractérisation tissulaire par ultrasons.
Resumo:
Résumé : Dans les couverts forestiers, le suivi de l’humidité du sol permet de prévenir plusieurs désastres tels que la paludification, les incendies et les inondations. Comme ce paramètre est très dynamique dans l’espace et dans le temps, son estimation à grande échelle présente un grand défi, d’où le recours à la télédétection radar. Le capteur radar à synthèse d’ouverture (RSO) est couramment utilisé grâce à sa vaste couverture et sa résolution spatiale élevée. Contrairement aux sols nus et aux zones agricoles, le suivi de l’humidité du sol en zone forestière est très peu étudié à cause de la complexité des processus de diffusion dans ce type de milieu. En effet, la forte atténuation de la contribution du sol par la végétation et la forte contribution de volume issue de la végétation réduisent énormément la sensibilité du signal radar à l’humidité du sol. Des études portées sur des couverts forestiers ont montré que le signal radar en bande C provient principalement de la couche supérieure et sature vite avec la densité de la végétation. Cependant, très peu d’études ont exploré le potentiel des paramètres polarimétriques, dérivés d’un capteur polarimétrique comme RADARSAT-2, pour suivre l’humidité du sol sur les couverts forestiers. L’effet du couvert végétal est moins important avec la bande L en raison de son importante profondeur de pénétration qui permet de mieux informer sur l’humidité du sol. L’objectif principal de ce projet est de suivre l’humidité du sol à partir de données radar entièrement polarimétriques en bandes C et L sur des sites forestiers. Les données utilisées sont celles de la campagne terrain Soil Moisture Active Passive Validation EXperiment 2012 (SMAPVEX12) tenue du 6 juin au 17 juillet 2012 au Manitoba (Canada). Quatre sites forestiers de feuillus ont été échantillonnés. L’espèce majoritaire présente est le peuplier faux-tremble. Les données utilisées incluent des mesures de l’humidité du sol, de la rugosité de surface du sol, des caractéristiques des sites forestiers (arbres, sous-bois, litières…) et des données radar entièrement polarimétriques aéroportées et satellitaires acquises respectivement, en bande L (UAVSAR) à 30˚ et 40˚ et en bande C (RADARSAT-2) entre 20˚ et 30˚. Plusieurs paramètres polarimétriques ont été dérivés des données UAVSAR et RADARSAT-2 : les coefficients de corrélation (ρHHVV, φHHVV, etc); la hauteur du socle; l’entropie (H), l’anisotropie (A) et l’angle alpha extraits de la décomposition de Cloude-Pottier; les puissances de diffusion de surface (Ps), de double bond (Pd) extraites de la décomposition de Freeman-Durden, etc. Des relations entre les données radar (coefficients de rétrodiffusion multifréquences et multipolarisations (linéaires et circulaires) et les paramètres polarimétriques) et l’humidité du sol ont été développées et analysées. Les résultats ont montré que 1) En bande L, plusieurs paramètres optimaux permettent le suivi de l’humidité du sol en zone forestière avec un coefficient de corrélation significatif (p-value < 0,05): σ[indice supérieur 0] linéaire et σ[indice supérieur 0] circulaire (le coefficient de corrélation, r, varie entre 0,60 et 0,96), Ps (r entre 0,59 et 0,84), Pd (r entre 0,6 et 0,82), ρHHHV_30˚, ρVVHV_30˚, φHHHV_30˚ and φHHVV_30˚ (r entre 0,56 et 0,81) alors qu’en bande C, ils sont réduits à φHHHV, φVVHV et φHHVV (r est autour de 0,90). 2) En bande L, les paramètres polarimétriques n’ont pas montré de valeur ajoutée par rapport aux signaux conventionnels multipolarisés d’amplitude, pour le suivi de l’humidité du sol sur les sites forestiers. En revanche, en bande C, certains paramètres polarimétriques ont montré de meilleures relations significatives avec l’humidité du sol que les signaux conventionnels multipolarisés d’amplitude.
Resumo:
Les mesures satellitaires de réflectance de télédétection (Rrs) associée à la fluorescence de la chlorophylle-a induite par le soleil (FCIS), notées Rrs,f , sont largement utilisées dans le domaine de l’océanographie converties sous la forme de rendement quantique de la fluorescence (QYF). Le QYF permet de déterminer l’impact de l’environnement sur la croissance du phytoplancton. Tout comme les autres mesures qui reposent sur la luminance montante, le QYF, et donc la Rrs,f , sont influencés par les effets de bidirectionnalité. Ainsi, sachant que la variabilité naturelle du QYF est faible, les biais engendrés par une normalisation inadéquate de la Rrs,f peuvent avoir des impacts importants sur l’interprétation des mesures de QYF à l’échelle planétaire. La méthode actuelle utilisée pour corriger la dépendance angulaire du signal observé dans la bande de fluorescence par le spectroradiomètre imageur à résolution moyenne (MODIS), embarqué à bord du satellite Aqua, repose sur l’application d’une table de correspondance (LUT) développée par Morel et al. (2002). Toutefois, l’approche de Morel et al. (2002) ne tient pas compte du caractère isotrope de la FCIS ce qui induit des biais systématiques sur les mesures de Rrs,f selon la latitude, par exemple. Dans ce mémoire, une nouvelle méthode de calcul de la LUT ayant pour but de réduire ces biais est introduite. Tout d’abord, celle-ci intègre une mise à jour des propriétés optiques inhérentes (IOPs) dans le modèle de transfert radiatif sur la base de publications plus récentes. Ensuite, la gamme spectrale de son application est élargie à la bande de fluorescence contrairement à la méthode actuelle qui se limite à la longueur d’onde de 660 nm. Finalement, la LUT révisée tient compte des trois composantes principales de la réflectance de télédétection que sont (1) la rétrodiffusion élastique de la lumière par les molécules d’eau et par les particules en suspension, (2) la diffusion Raman (inélastique) par les molécules d’eau et (3) la FCIS. Les résultats de Rrs,f normalisées avec la nouvelle méthode présentent une différence de dispersion moyenne par rapport à celle obtenue par l’application de la méthode de Morel et al. (2002) de l’ordre de -15 %. Des différences significatives, de l’ordre de -22 %, sont observées à de grands angles d’observation et d’éclairement (> 55 %).