89 resultados para queuing
Resumo:
In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level. Finally, the tilting parameter just found is used to estimate the overflow probability of interest. We study various properties of the method in more detail for the M/M/1 queue and conjecture that similar properties also hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.
Resumo:
P-NET is a multi-master fieldbus standard based on a virtual token passing scheme. In P-NET each master is allowed to transmit only one message per token visit. In the worst-case, the communication response time can be derived considering that, in each token cycle, all stations use the token to transmit a message. In this paper, we define a more sophisticated P-NET model, which considers the actual token utilisation. We then analyse the possibility of implementing a local priority-based scheduling policy to improve the real-time behaviour of P-NET.
Resumo:
Although power-line communication (PLC) is not a new technology, its use to support data communication with timing requirements is still the focus of ongoing research. A new infrastructure intended for communication using power lines from a central location to dispersed nodes using inexpensive devices was presented recently. This new infrastructure uses a two-level hierarchical power-line system, together with an IP-based network. Due to the master-slave behaviour of the PLC medium access, together with the inherent dynamic topology of power-line networks, a mechanism to provide end-to-end communication through the two levels of the power-line system must be provided. In this paper we introduce the architecture of the PLC protocol layer that is being implemented for this end.
Resumo:
One of the assumptions of the Capacitated Facility Location Problem (CFLP) is thatdemand is known and fixed. Most often, this is not the case when managers take somestrategic decisions such as locating facilities and assigning demand points to thosefacilities. In this paper we consider demand as stochastic and we model each of thefacilities as an independent queue. Stochastic models of manufacturing systems anddeterministic location models are put together in order to obtain a formula for thebacklogging probability at a potential facility location.Several solution techniques have been proposed to solve the CFLP. One of the mostrecently proposed heuristics, a Reactive Greedy Adaptive Search Procedure, isimplemented in order to solve the model formulated. We present some computationalexperiments in order to evaluate the heuristics performance and to illustrate the use ofthis new formulation for the CFLP. The paper finishes with a simple simulationexercise.
Resumo:
Previous covering models for emergency service consider all the calls to be of the sameimportance and impose the same waiting time constraints independently of the service's priority.This type of constraint is clearly inappropriate in many contexts. For example, in urban medicalemergency services, calls that involve danger to human life deserve higher priority over calls formore routine incidents. A realistic model in such a context should allow prioritizing the calls forservice.In this paper a covering model which considers different priority levels is formulated andsolved. The model heritages its formulation from previous research on Maximum CoverageModels and incorporates results from Queuing Theory, in particular Priority Queuing. Theadditional complexity incorporated in the model justifies the use of a heuristic procedure.
Resumo:
This thesis analyses certain problems in Inventories and Queues. There are many situations in real-life where we encounter models as described in this thesis. It analyses in depth various models which can be applied to production, storag¢, telephone traffic, road traffic, economics, business administration, serving of customers, operations of particle counters and others. Certain models described here is not a complete representation of the true situation in all its complexity, but a simplified version amenable to analysis. While discussing the models, we show how a dependence structure can be suitably introduced in some problems of Inventories and Queues. Continuous review, single commodity inventory systems with Markov dependence structure introduced in the demand quantities, replenishment quantities and reordering levels are considered separately. Lead time is assumed to be zero in these models. An inventory model involving random lead time is also considered (Chapter-4). Further finite capacity single server queueing systems with single/bulk arrival, single/bulk services are also discussed. In some models the server is assumed to go on vacation (Chapters 7 and 8). In chapters 5 and 6 a sort of dependence is introduced in the service pattern in some queuing models.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In most species, some individuals delay reproduction or occupy inferior breeding positions. The queue hypothesis tries to explain both patterns by proposing that individuals strategically delay breeding (queue) to acquire better breeding or social positions. In 1995, Ens, Weissing, and Drent addressed evolutionarily stable queuing strategies in situations with habitat heterogeneity. However, their model did not consider the non - mutually exclusive individual quality hypothesis, which suggests that some individuals delay breeding or occupy inferior breeding positions because they are poor competitors. Here we extend their model with individual differences in competitive abilities, which are probably plentiful in nature. We show that including even the smallest competitive asymmetries will result in individuals using queuing strategies completely different from those in models that assume equal competitors. Subsequently, we investigate how well our models can explain settlement patterns in the wild, using a long-term study on oystercatchers. This long-lived shorebird exhibits strong variation in age of first reproduction and territory quality. We show that only models that include competitive asymmetries can explain why oystercatchers' settlement patterns depend on natal origin. We conclude that predictions from queuing models are very sensitive to assumptions about competitive asymmetries, while detecting such differences in the wild is often problematic.
Resumo:
Los dispositivos móviles modernos disponen cada vez de más funcionalidad debido al rápido avance de las tecnologías de las comunicaciones y computaciones móviles. Sin embargo, la capacidad de la batería no ha experimentado un aumento equivalente. Por ello, la experiencia de usuario en los sistemas móviles modernos se ve muy afectada por la vida de la batería, que es un factor inestable de difícil de control. Para abordar este problema, investigaciones anteriores han propuesto un esquema de gestion del consumo (PM) centrada en la energía y que proporciona una garantía sobre la vida operativa de la batería mediante la gestión de la energía como un recurso de primera clase en el sistema. Como el planificador juega un papel fundamental en la administración del consumo de energía y en la garantía del rendimiento de las aplicaciones, esta tesis explora la optimización de la experiencia de usuario para sistemas móviles con energía limitada desde la perspectiva de un planificador que tiene en cuenta el consumo de energía en un contexto en el que ésta es un recurso de primera clase. En esta tesis se analiza en primer lugar los factores que contribuyen de forma general a la experiencia de usuario en un sistema móvil. Después se determinan los requisitos esenciales que afectan a la experiencia de usuario en la planificación centrada en el consumo de energía, que son el reparto proporcional de la potencia, el cumplimiento de las restricciones temporales, y cuando sea necesario, el compromiso entre la cuota de potencia y las restricciones temporales. Para cumplir con los requisitos, el algoritmo clásico de fair queueing y su modelo de referencia se extienden desde los dominios de las comunicaciones y ancho de banda de CPU hacia el dominio de la energía, y en base a ésto, se propone el algoritmo energy-based fair queueing (EFQ) para proporcionar una planificación basada en la energía. El algoritmo EFQ está diseñado para compartir la potencia consumida entre las tareas mediante su planificación en función de la energía consumida y de la cuota reservada. La cuota de consumo de cada tarea con restricciones temporales está protegida frente a diversos cambios que puedan ocurrir en el sistema. Además, para dar mejor soporte a las tareas en tiempo real y multimedia, se propone un mecanismo para combinar con el algoritmo EFQ para dar preferencia en la planificación durante breves intervalos de tiempo a las tareas más urgentes con restricciones temporales.Las propiedades del algoritmo EFQ se evaluan a través del modelado de alto nivel y la simulación. Los resultados de las simulaciones indican que los requisitos esenciales de la planificación centrada en la energía pueden lograrse. El algoritmo EFQ se implementa más tarde en el kernel de Linux. Para evaluar las propiedades del planificador EFQ basado en Linux, se desarrolló un banco de pruebas experimental basado en una sitema empotrado, un programa de banco de pruebas multihilo, y un conjunto de pruebas de código abierto. A través de experimentos específicamente diseñados, esta tesis verifica primero las propiedades de EFQ en la gestión de la cuota de consumo de potencia y la planificación en tiempo real y, a continuación, explora los beneficios potenciales de emplear la planificación EFQ en la optimización de la experiencia de usuario para sistemas móviles con energía limitada. Los resultados experimentales sobre la gestión de la cuota de energía muestran que EFQ es más eficaz que el planificador de Linux-CFS en la gestión de energía, logrando un reparto proporcional de la energía del sistema independientemente de en qué dispositivo se consume la energía. Los resultados experimentales en la planificación en tiempo real demuestran que EFQ puede lograr de forma eficaz, flexible y robusta el cumplimiento de las restricciones temporales aunque se dé el caso de aumento del el número de tareas o del error en la estimación de energía. Por último, un análisis comparativo de los resultados experimentales sobre la optimización de la experiencia del usuario demuestra que, primero, EFQ es más eficaz y flexible que los algoritmos tradicionales de planificación del procesador, como el que se encuentra por defecto en el planificador de Linux y, segundo, que proporciona la posibilidad de optimizar y preservar la experiencia de usuario para los sistemas móviles con energía limitada. Abstract Modern mobiledevices have been becoming increasingly powerful in functionality and entertainment as the next-generation mobile computing and communication technologies are rapidly advanced. However, the battery capacity has not experienced anequivalent increase. The user experience of modern mobile systems is therefore greatly affected by the battery lifetime,which is an unstable factor that is hard to control. To address this problem, previous works proposed energy-centric power management (PM) schemes to provide strong guarantee on the battery lifetime by globally managing energy as the first-class resource in the system. As the processor scheduler plays a pivotal role in power management and application performance guarantee, this thesis explores the user experience optimization of energy-limited mobile systemsfrom the perspective of energy-centric processor scheduling in an energy-centric context. This thesis first analyzes the general contributing factors of the mobile system user experience.Then itdetermines the essential requirements on the energy-centric processor scheduling for user experience optimization, which are proportional power sharing, time-constraint compliance, and when necessary, a tradeoff between the power share and the time-constraint compliance. To meet the requirements, the classical fair queuing algorithm and its reference model are extended from the network and CPU bandwidth sharing domain to the energy sharing domain, and based on that, the energy-based fair queuing (EFQ) algorithm is proposed for performing energy-centric processor scheduling. The EFQ algorithm is designed to provide proportional power shares to tasks by scheduling the tasks based on their energy consumption and weights. The power share of each time-sensitive task is protected upon the change of the scheduling environment to guarantee a stable performance, and any instantaneous power share that is overly allocated to one time-sensitive task can be fairly re-allocated to the other tasks. In addition, to better support real-time and multimedia scheduling, certain real-time friendly mechanism is combined into the EFQ algorithm to give time-limited scheduling preference to the time-sensitive tasks. Through high-level modelling and simulation, the properties of the EFQ algorithm are evaluated. The simulation results indicate that the essential requirements of energy-centric processor scheduling can be achieved. The EFQ algorithm is later implemented in the Linux kernel. To assess the properties of the Linux-based EFQ scheduler, an experimental test-bench based on an embedded platform, a multithreading test-bench program, and an open-source benchmark suite is developed. Through specifically-designed experiments, this thesis first verifies the properties of EFQ in power share management and real-time scheduling, and then, explores the potential benefits of employing EFQ scheduling in the user experience optimization for energy-limited mobile systems. Experimental results on power share management show that EFQ is more effective than the Linux-CFS scheduler in managing power shares and it can achieve a proportional sharing of the system power regardless of on which device the energy is spent. Experimental results on real-time scheduling demonstrate that EFQ can achieve effective, flexible and robust time-constraint compliance upon the increase of energy estimation error and task number. Finally, a comparative analysis of the experimental results on user experience optimization demonstrates that EFQ is more effective and flexible than traditional processor scheduling algorithms, such as those of the default Linux scheduler, in optimizing and preserving the user experience of energy-limited mobile systems.
Resumo:
The main features of virtual organizations are outlined. The mathematical models of functioning of virtual organization are offered on the basis of theory of queuing systems. Characteristics of efficiency are examined.
Resumo:
This work was supported by the Bulgarian National Science Fund under grant BY-TH-105/2005.
Resumo:
2002 Mathematics Subject Classification: 60K25.
Resumo:
Queuing is one of the very important criteria for assessing the performance and efficiency of any service industry, including healthcare. Data Envelopment Analysis (DEA) is one of the most widely-used techniques for performance measurement in healthcare. However, no queue management application has been reported in the health-related DEA literature. Most of the studies regarding patient flow systems had the objective of improving an already existing Appointment System. The current study presents a novel application of DEA for assessing the queuing process at an Outpatients’ department of a large public hospital in a developing country where appointment systems do not exist. The main aim of the current study is to demonstrate the usefulness of DEA modelling in the evaluation of a queue system. The patient flow pathway considered for this study consists of two stages; consultation with a doctor and pharmacy. The DEA results indicated that waiting times and other related queuing variables included need considerable minimisation at both stages.
Resumo:
In the Hammersley-Aldous-Diaconis process, infinitely many particles sit in R and at most one particle is allowed at each position. A particle at x, whose nearest neighbor to the right is at y, jumps at rate y - x to a position uniformly distributed in the interval (x, y). The basic coupling between trajectories with different initial configuration induces a process with different classes of particles. We show that the invariant measures for the two-class process can be obtained as follows. First, a stationary M/M/1 queue is constructed as a function of two homogeneous Poisson processes, the arrivals with rate, and the (attempted) services with rate rho > lambda Then put first class particles at the instants of departures (effective services) and second class particles at the instants of unused services. The procedure is generalized for the n-class case by using n - 1 queues in tandem with n - 1 priority types of customers. A multi-line process is introduced; it consists of a coupling (different from Liggett's basic coupling), having as invariant measure the product of Poisson processes. The definition of the multi-line process involves the dual points of the space-time Poisson process used in the graphical construction of the reversed process. The coupled process is a transformation of the multi-line process and its invariant measure is the transformation described above of the product measure.