959 resultados para quantum biology, open quantum systems dynamics,non markovian, non perturbative,matrix product state, time evolving block decimation,light harvesting complexes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La quantum biology (QB) è un campo di ricerca emergente che cerca di affronta- re fenomeni quantistici non triviali all’interno dei contesti biologici dotandosi di dati sperimentali di esplorazioni teoriche e tecniche numeriche. I sistemi biologici sono per definizione sistemi aperti, caldi,umidi e rumorosi, e queste condizioni sono per loro imprenscindibili; si pensa sia un sistema soggetto ad una veloce decoerenza che sopprime ogni dinamica quantistica controllata. La QB, tramite i principi di noise assisted transport e di antenna fononica sostiene che la presenza di un adeguato livello di rumore ambientale aumenti l’efficienza di un network di trasporto,inoltre se all’interno dello spettro ambientale vi sono specifici modi vibrazionali persistenti si hanno effetti di risonanza che rigenerano la coerenza quantistica. L’interazione ambiente-sistema è di tipo non Markoviano,non perturbativo e di forte non equi- librio, ed il rumore non è trattato come tradizionale rumore bianco. La tecnica numerica che per prima ha predetto la rigenerazione della coerenza all’interno di questi network proteici è stato il TEBD, Time Evolving Block Decimation, uno schema numerico che permette di simulare sistemi 1-D a molti corpi, caratterizzati da interazioni di primi vicini e leggermente entangled. Tramite gli algoritmi numerici di Orthopol l’hamiltoniana spin-bosone viene proiettata su una catena discreta 1-D, tenendo conto degli effetti di interazione ambiente-sistema contenuti nello spettro(il quale determina la dinamica del sistema).Infine si esegue l’evoluzione dello stato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various load compensation schemes proposed in literature assume that voltage source at point of common coupling (PCC) is stiff. In practice, however, the load is remote from a distribution substation and is supplied by a feeder. In the presence of feeder impedance, the PWM inverter switchings distort both the PCC voltage and the source currents. In this paper load compensation with such a non-stiff source is considered. A switching control of the voltage source inverter (VSI) based on state feedback is used for load compensation with non-stiff source. The design of the state feedback controller requires careful considerations in choosing a gain matrix and in the generation of reference quantities. These aspects are considered in this paper. Detailed simulation and experimental results are given to support the control design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single light-harvesting complexes LH-2 from Rhodopseudomonas acidophila were immobilized on various charged surfaces under physiological conditions. Polarized light experiments showed that the complexes were situated on the surface as nearly upright cylinders. Their fluorescence lifetimes and photobleaching properties were obtained by using a confocal fluorescence microscope with picosecond time resolution. Initially all molecules fluoresced with a lifetime of 1 ± 0.2 ns, similar to the bulk value. The photobleaching of one bacteriochlorophyll molecule from the 18-member assembly caused the fluorescence to switch off completely, because of trapping of the mobile excitations by energy transfer. This process was linear in light intensity. On continued irradiation the fluorescence often reappeared, but all molecules did not show the same behavior. Some LH-2 complexes displayed a variation of their quantum yields that was attributed to photoinduced confinement of the excited states and thereby a diminution of the superradiance. Others showed much shorter lifetimes caused by excitation energy traps that are only ≈3% efficient. On repeated excitation some molecules entered a noisy state where the fluorescence switched on and off with a correlation time of ≈0.1 s. About 490 molecules were examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved excited-state absorption intensities after direct two-photon excitation of the carotenoid S1 state are reported for light-harvesting complexes of purple bacteria. Direct excitation of the carotenoid S1 state enables the measurement of subsequent dynamics on a fs time scale without interference from higher excited states, such as the optically allowed S2 state or the recently discovered dark state situated between S1 and S2. The lifetimes of the carotenoid S1 states in the B800-B850 complex and B800-B820 complex of Rhodopseudomonas acidophila are 7 ± 0.5 ps and 6 ± 0.5 ps, respectively, and in the light-harvesting complex 2 of Rhodobacter sphaeroides ≈1.9 ± 0.5 ps. These results explain the differences in the carotenoid to bacteriochlorophyll energy transfer efficiency after S2 excitation. In Rps. acidophila the carotenoid S1 to bacteriochlorophyll energy transfer is found to be quite inefficient (φET1 <28%) whereas in Rb. sphaeroides this energy transfer is very efficient (φET1 ≈80%). The results are rationalized by calculations of the ensemble averaged time constants. We find that the Car S1 → B800 electronic energy transfer (EET) pathway (≈85%) dominates over Car S1 → B850 EET (≈15%) in Rb. sphaeroides, whereas in Rps. acidophila the Car S1 → B850 EET (≈60%) is more efficient than the Car S1 → B800 EET (≈40%). The individual electronic couplings for the Car S1 → BChl energy transfer are estimated to be approximately 5–26 cm−1. A major contribution to the difference between the energy transfer efficiencies can be explained by different Car S1 energy gaps in the two species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In green plants, the function of collecting solar energy for photosynthesis is fulfilled by a series of light-harvesting complexes (LHC). The light-harvesting chlorophyll a/b protein (LHCP) is synthesized in the cytosol as a precursor (pLHCP), then imported into chloroplasts and assembled into photosynthetic thylakoid membranes. Knowledge about the regulation of the transport processes of LHCP is rather limited. Closely mimicking the in vivo situation, cell-free protein expression system is employed in this dissertation to study the reconstitution of LHCP into artificial membranes. The approach starts merely from the genetic information of the protein, so the difficult and time-consuming procedures of protein expression and purification can be avoided. The LHCP encoding gene from Pisum sativum was cloned into a cell-free compatible vector system and the protein was expressed in wheat germ extracts. Vesicles or pigment-containing vesicles were prepared with either synthetic lipid or purified plant leaf lipid to mimic cell membranes. LHCP was synthesized in wheat germ extract systems with or without supplemented lipids. The addition of either synthetic or purified plant leaf lipid was found to be beneficial to the general productivity of the expression system. The lipid membrane insertion of the LHCP was investigated by radioactive labelling, protease digestion, and centrifugation assays. The LHCP is partially protected against protease digestion; however the protection is independent from the supplemented lipids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the link between information and thermodynamics embodied by Landauer’s principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature reservoir. We demonstrate that Landauer’s principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for heat and entropy power can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evolution. Such features are illustrated in two exemplary cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend the concept of superadiabatic dynamics, or transitionless quantum driving, to quantum open systems whose evolution is governed by a master equation in the Lindblad form. We provide the general framework needed to determine the control strategy required to achieve superadiabaticity. We apply our formalism to two examples consisting of a two-level system coupled to environments with time-dependent bath operators. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are currently at the cusp of a revolution in quantum technology that relies not just on the passive use of quantum effects, but on their active control. At the forefront of this revolution is the implementation of a quantum computer. Encoding information in quantum states as “qubits” allows to use entanglement and quantum superposition to perform calculations that are infeasible on classical computers. The fundamental challenge in the realization of quantum computers is to avoid decoherence – the loss of quantum properties – due to unwanted interaction with the environment. This thesis addresses the problem of implementing entangling two-qubit quantum gates that are robust with respect to both decoherence and classical noise. It covers three aspects: the use of efficient numerical tools for the simulation and optimal control of open and closed quantum systems, the role of advanced optimization functionals in facilitating robustness, and the application of these techniques to two of the leading implementations of quantum computation, trapped atoms and superconducting circuits. After a review of the theoretical and numerical foundations, the central part of the thesis starts with the idea of using ensemble optimization to achieve robustness with respect to both classical fluctuations in the system parameters, and decoherence. For the example of a controlled phasegate implemented with trapped Rydberg atoms, this approach is demonstrated to yield a gate that is at least one order of magnitude more robust than the best known analytic scheme. Moreover this robustness is maintained even for gate durations significantly shorter than those obtained in the analytic scheme. Superconducting circuits are a particularly promising architecture for the implementation of a quantum computer. Their flexibility is demonstrated by performing optimizations for both diagonal and non-diagonal quantum gates. In order to achieve robustness with respect to decoherence, it is essential to implement quantum gates in the shortest possible amount of time. This may be facilitated by using an optimization functional that targets an arbitrary perfect entangler, based on a geometric theory of two-qubit gates. For the example of superconducting qubits, it is shown that this approach leads to significantly shorter gate durations, higher fidelities, and faster convergence than the optimization towards specific two-qubit gates. Performing optimization in Liouville space in order to properly take into account decoherence poses significant numerical challenges, as the dimension scales quadratically compared to Hilbert space. However, it can be shown that for a unitary target, the optimization only requires propagation of at most three states, instead of a full basis of Liouville space. Both for the example of trapped Rydberg atoms, and for superconducting qubits, the successful optimization of quantum gates is demonstrated, at a significantly reduced numerical cost than was previously thought possible. Together, the results of this thesis point towards a comprehensive framework for the optimization of robust quantum gates, paving the way for the future realization of quantum computers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a measure of quantum correlation for a multipartite system, defined as the sum of the correlations for all possible partitions. Our measure can be defined for quantum discord (QD), geometric quantum discord or even for entanglement of formation (EOF). For tripartite pure states, we show that the multipartite measures for the QD and the EOF are equivalent, which allows direct comparison of the distribution and the robustness of these correlations in open quantum systems. We study dissipative dynamics for two distinct families of entanglement: a W state and a GHZ state. We show that, for the W state, the QD is more robust than the entanglement, while for the GHZ state, this is not true. It turns out that the initial genuine multipartite entanglement present in the GHZ state makes the EOF more robust than the QD. © IOP Publishing and Deutsche Physikalische Gesellschaft.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis discusses memory effects in open quantum systems with an emphasis on the Breuer, Laine, Piilo (BLP) measure of non-Markovianity. It is shown how the calculation of the measure can be simplifed and how quantum information protocols can bene t from memory e ects. The superdense coding protocol is used as an example of this. The quantum Zeno effect will also be studied from the point of view of memory e ects. Finally the geometric ideas used in simplifying the calculation of the BLP measure are applied in studying the amount of resources needed for detecting bipartite quantum correlations. It is shown that to decide without prior information if an unknown quantum state is entangled or not, an informationally complete measurement is required. The first part of the thesis contains an introduction to the theoretical ideas such as quantum states, closed and open quantum systems and necessary mathematical tools. The theory is then applied in the second part of the thesis as the results obtained in the original publications I-VI are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents studies of the role of disorder in non-equilibrium quantum systems. The quantum states relevant to dynamics in these systems are very different from the ground state of the Hamiltonian. Two distinct systems are studied, (i) periodically driven Hamiltonians in two dimensions, and (ii) electrons in a one-dimensional lattice with power-law decaying hopping amplitudes. In the first system, the novel phases that are induced from the interplay of periodic driving, topology and disorder are studied. In the second system, the Anderson transition in all the eigenstates of the Hamiltonian are studied, as a function of the power-law exponent of the hopping amplitude.

In periodically driven systems the study focuses on the effect of disorder in the nature of the topology of the steady states. First, we investigate the robustness to disorder of Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are generated by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator.

Interestingly, the effects of disorder are not necessarily adverse, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). Such a state would be a dynamical realization of the topological Anderson insulator. We identify the conditions on the driving field necessary for observing such a transition. We realize such a disorder induced topological Floquet spectrum in the driven honeycomb lattice and quantum well models.

Finally, we show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk. Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized, yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a trivial, fully localized phase, and show that the two phases are separated by a phase transition.

The thesis also present the study of disordered systems using Wegner's Flow equations. The Flow Equation Method was proposed as a technique for studying excited states in an interacting system in one dimension. We apply this method to a one-dimensional tight binding problem with power-law decaying hoppings. This model presents a transition as a function of the exponent of the decay. It is shown that the the entire phase diagram, i.e. the delocalized, critical and localized phases in these systems can be studied using this technique. Based on this technique, we develop a strong-bond renormalization group that procedure where we solve the Flow Equations iteratively. This renormalization group approach provides a new framework to study the transition in this system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Comment by Mayers and Reiter criticizes our work on two counts. Firstly, it is claimed that the quantum decoherence effects that we report in consequence of our experimental analysis of neutron Compton scattering from H in gaseous H2 are not, as we maintain, outside the framework of conventional neutron scatteringtheory. Secondly, it is claimed that we did not really observe such effects, owing to a faulty analysis of the experimental data, which are claimed to be in agreement with conventional theory. We focus in this response on the critical issue of the reliability of our experimental results and analysis. Using the same standard Vesuvio instrument programs used by Mayers et al., we show that, if the experimental results for H in gaseous H2 are in agreement with conventional theory, then those for D in gaseous D2 obtained in the same way cannot be, and vice-versa. We expose a flaw in the calibration methodology used by Mayers et al. that leads to the present disagreement over the behaviour of H, namely the ad hoc adjustment of the measured H peak positions in TOF during the calibration of Vesuvio so that agreement is obtained with the expectation of conventional theory. We briefly address the question of the necessity to apply the theory of open quantum systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decoherence of quantum entangled particles is observed in most systems, and is usually caused by system-environment interactions. Disentangling two subsystems A and B of a quantum systemAB is tantamount to erasure of quantum phase relations between A and B. It is widely believed that this erasure is an innocuous process, which e.g. does not affect the energies of A and B. Surprisingly, recent theoretical investigations by different groups showed that disentangling two systems, i.e. their decoherence, can cause an increase of their energies. Applying this result to the context of neutronCompton scattering from H2 molecules, we provide for the first time experimental evidence which supports this prediction. The results reveal that the neutron-proton collision leading to the cleavage of the H-H bond in the sub-femtosecond timescale is accompanied by larger energy transfer (by about 3%) than conventional theory predicts. It is proposed to interpreted the results by considering the neutron-proton collisional system as an entangled open quantum system being subject to decoherence owing to the interactions with the “environment” (i.e., two electrons plus second proton of H2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis I present the work done during my PhD in the area of low dimensional quantum gases. The chapters of this thesis are self contained and represent individual projects which have been peer reviewed and accepted for publication in respected international journals. Various systems are considered, the first of which is a two particle model which possesses an exact analytical solution. I investigate the non-classical correlations that exist between the particles as a function of the tunable properties of the system. In the second work I consider the coherences and out of equilibrium dynamics of a one-dimensional Tonks-Girardeau gas. I show how the coherence of the gas can be inferred from various properties of the reduced state and how this may be observed in experiments. I then present a model which can be used to probe a one-dimensional Fermi gas by performing a measurement on an impurity which interacts with the gas. I show how this system can be used to observe the so-called orthogonality catastrophe using modern interferometry techniques. In the next chapter I present a simple scheme to create superposition states of particles with special emphasis on the NOON state. I explore the effect of inter-particle interactions in the process and then characterise the usefulness of these states for interferometry. Finally I present my contribution to a project on long distance entanglement generation in ion chains. I show how carefully tuning the environment can create decoherence-free subspaces which allows one to create and preserve entanglement.