986 resultados para quantum Fisher information
Resumo:
In population pharmacokinetic studies, the precision of parameter estimates is dependent on the population design. Methods based on the Fisher information matrix have been developed and extended to population studies to evaluate and optimize designs. In this paper we propose simple programming tools to evaluate population pharmacokinetic designs. This involved the development of an expression for the Fisher information matrix for nonlinear mixed-effects models, including estimation of the variance of the residual error. We implemented this expression as a generic function for two software applications: S-PLUS and MATLAB. The evaluation of population designs based on two pharmacokinetic examples from the literature is shown to illustrate the efficiency and the simplicity of this theoretic approach. Although no optimization method of the design is provided, these functions can be used to select and compare population designs among a large set of possible designs, avoiding a lot of simulations.
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2012
Resumo:
International audience
Resumo:
International audience
Resumo:
Quantum channel identification, a standard problem in quantum metrology, is the task of estimating parameter(s) of a quantum channel. We investigate dissonance (quantum discord in the absence of entanglement) as an aid to quantum channel identification and find evidence for dissonance as a resource for quantum information processing. We consider the specific case of dissonant Bell-diagonal probes of the qubit depolarizing channel, using quantum Fisher information as a measure of statistical information extracted by the probe. In this setting dissonant quantum probes yield more statistical information about the depolarizing probability than do corresponding probes without dissonance and greater dissonance yields greater information. This effect only operates consistently when we control for classical correlation between the probe and its ancilla and the joint and marginal purities of the ancilla and probe.
Resumo:
We present a method to verify the metrological usefulness of noisy Dicke states of a particle ensemble with only a few collective measurements, without the need for a direct measurement of the sensitivity. Our method determines the usefulness of the state for the usual protocol for estimating the angle of rotation with Dicke states, which is based on the measurement of the second moment of a total spin component. It can also be used to detect entangled states that are useful for quantum metrology. We apply our method to recent experimental results.
Resumo:
Questo lavoro di tesi si inserisce nel recente filone di ricerca che ha lo scopo di studiare le strutture della Meccanica quantistica facendo impiego della geometria differenziale. In particolare, lo scopo della tesi è analizzare la geometria dello spazio degli stati quantistici puri e misti. Dopo aver riportato i risultati noti relativi a questo argomento, vengono calcolati esplicitamente il tensore metrico e la forma simplettica come parte reale e parte immaginaria del tensore di Fisher per le matrici densità 2×2 e 3×3. Quest’ultimo altro non é che la generalizzazione di uno strumento molto usato in Teoria dell’Informazione: l’Informazione di Fisher. Dal tensore di Fisher si può ottenere un tensore metrico non solo sulle orbite generate dall'azione del gruppo unitario ma anche su percorsi generati da trasformazioni non unitarie. Questo fatto apre la strada allo studio di tutti i percorsi possibili all'interno dello spazio delle matrici densità, che in questa tesi viene esplicitato per le matrici 2×2 e affrontato utilizzando il formalismo degli operatori di Kraus. Proprio grazie a questo formalismo viene introdotto il concetto di semi-gruppo dinamico che riflette la non invertibilità di evoluzioni non unitarie causate dall'interazione tra il sistema sotto esame e l’ambiente. Viene infine presentato uno schema per intraprendere la stessa analisi sulle matrici densità 3×3, e messe in evidenza le differenze con il caso 2×2.
Resumo:
We review the field of quantum optical information from elementary considerations to quantum computation schemes. We illustrate our discussion with descriptions of experimental demonstrations of key communication and processing tasks from the last decade and also look forward to the key results likely in the next decade. We examine both discrete (single photon) type processing as well as those which employ continuous variable manipulations. The mathematical formalism is kept to the minimum needed to understand the key theoretical and experimental results.
Resumo:
Recently a new Bell inequality has been introduced by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)], which is strongly resistant to noise for maximally entangled states of two d-dimensional quantum systems. We prove that a larger violation, or equivalently a stronger resistance to noise, is found for a nonmaximally entangled state. It is shown that the resistance to noise is not a good measure of nonlocality and we introduce some other possible measures. The nonmaximally entangled state turns out to be more robust also for these alternative measures. From these results it follows that two von Neumann measurements per party may be not optimal for detecting nonlocality. For d=3,4, we point out some connections between this inequality and distillability. Indeed, we demonstrate that any state violating it, with the optimal von Neumann settings, is distillable.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
2000 Mathematics Subject Classification: 33C90, 62E99.
Resumo:
The focus of this thesis is the extension of topographic visualisation mappings to allow for the incorporation of uncertainty. Few visualisation algorithms in the literature are capable of mapping uncertain data with fewer able to represent observation uncertainties in visualisations. As such, modifications are made to NeuroScale, Locally Linear Embedding, Isomap and Laplacian Eigenmaps to incorporate uncertainty in the observation and visualisation spaces. The proposed mappings are then called Normally-distributed NeuroScale (N-NS), T-distributed NeuroScale (T-NS), Probabilistic LLE (PLLE), Probabilistic Isomap (PIso) and Probabilistic Weighted Neighbourhood Mapping (PWNM). These algorithms generate a probabilistic visualisation space with each latent visualised point transformed to a multivariate Gaussian or T-distribution, using a feed-forward RBF network. Two types of uncertainty are then characterised dependent on the data and mapping procedure. Data dependent uncertainty is the inherent observation uncertainty. Whereas, mapping uncertainty is defined by the Fisher Information of a visualised distribution. This indicates how well the data has been interpolated, offering a level of ‘surprise’ for each observation. These new probabilistic mappings are tested on three datasets of vectorial observations and three datasets of real world time series observations for anomaly detection. In order to visualise the time series data, a method for analysing observed signals and noise distributions, Residual Modelling, is introduced. The performance of the new algorithms on the tested datasets is compared qualitatively with the latent space generated by the Gaussian Process Latent Variable Model (GPLVM). A quantitative comparison using existing evaluation measures from the literature allows performance of each mapping function to be compared. Finally, the mapping uncertainty measure is combined with NeuroScale to build a deep learning classifier, the Cascading RBF. This new structure is tested on the MNist dataset achieving world record performance whilst avoiding the flaws seen in other Deep Learning Machines.
Resumo:
In this paper we proposed a new two-parameters lifetime distribution with increasing failure rate. The new distribution arises on a latent complementary risk problem base. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulae for its reliability and failure rate functions, quantiles and moments, including the mean and variance. A simple EM-type algorithm for iteratively computing maximum likelihood estimates is presented. The Fisher information matrix is derived analytically in order to obtaining the asymptotic covariance matrix. The methodology is illustrated on a real data set. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.