19 resultados para quadratures
Resumo:
MSC 2010: 33C47, 42C05, 41A55, 65D30, 65D32
Resumo:
We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving-field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific to (Zeeman) multilevel configurations are identified.
Resumo:
We consider pure continuous variable entanglement with non-equal correlations between orthogonal quadratures. We introduce a simple protocol which equates these correlations and in the process transforms the entanglement onto a state with the minimum allowed number of photons. As an example we show that our protocol transforms, through unitary local operations, a single squeezed beam split on a beam splitter into the same entanglement that is produced when two squeezed beams are mixed orthogonally. We demonstrate that this technique can in principle facilitate perfect teleportation utilizing only one squeezed beam.
Resumo:
El treball de recerca que aquí es presenta és l’estudi dels tres primers "elementa" de la "Geometriae Speciosae Elementa" (Bolonya, 1659) de Pietro Mengoli (1625-1686), que fou possiblement el deixeble més original de Bonaventura Cavalieri (1598-1647). En aquesta obra Mengoli desenvolupa un nou mètode per calcular quadratures utilitzant una teoria numèrica anomenada de “quasi proporcions”. Mengoli fonamenta les quasi proporcions en la teoria de proporcions del llibre cinquè dels "Elements" d’Euclides, a la qual hi afegeix unes nocions originals: raó “quasi nul•la”, “quasi infinita” i “quasi un nombre”. Una exhaustiva anàlisi d’aquesta teoria demostra l’originalitat de l’obra de Mengoli tant pel que fa a la seva forma d’exposició com pel que fa al seu contingut.
Resumo:
The Treatise on Quadrature of Fermat (c. 1659), besides containing the first known proof of the computation of the area under a higher parabola, R x+m/n dx, or under a higher hyperbola, R x-m/n dx with the appropriate limits of integration in each case , has a second part which was not understood by Fermat s contemporaries. This second part of the Treatise is obscure and difficult to read and even the great Huygens described it as'published with many mistakes and it is so obscure (with proofs redolent of error) that I have been unable to make any sense of it'. Far from the confusion that Huygens attributes to it, in this paper we try to prove that Fermat, in writing the Treatise, had a very clear goal in mind and he managed to attain it by means of a simple and original method. Fermat reduced the quadrature of a great number of algebraic curves to the quadrature of known curves: the higher parabolas and hyperbolas of the first part of the paper. Others, he reduced to the quadrature of the circle. We shall see how the clever use of two procedures, quite novel at the time: the change of variables and a particular case of the formulaof integration by parts, provide Fermat with the necessary tools to square very easily curves as well-known as the folium of Descartes, the cissoid of Diocles or the witch of Agnesi.
Resumo:
The questions studied in this thesis are centered around the moment operators of a quantum observable, the latter being represented by a normalized positive operator measure. The moment operators of an observable are physically relevant, in the sense that these operators give, as averages, the moments of the outcome statistics for the measurement of the observable. The main questions under consideration in this work arise from the fact that, unlike a projection valued observable of the von Neumann formulation, a general positive operator measure cannot be characterized by its first moment operator. The possibility of characterizing certain observables by also involving higher moment operators is investigated and utilized in three different cases: a characterization of projection valued measures among all the observables is given, a quantization scheme for unbounded classical variables using translation covariant phase space operator measures is presented, and, finally, a mathematically rigorous description is obtained for the measurements of rotated quadratures and phase space observables via the high amplitude limit in the balanced homodyne and eight-port homodyne detectors, respectively. In addition, the structure of the covariant phase space operator measures, which is essential for the above quantization, is analyzed in detail in the context of a (not necessarily unimodular) locally compact group as the phase space.
Resumo:
Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schr¨odinger equations in dimensions n = 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schr¨odinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether’s theorem, all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schr¨odinger equations involving an extra modulation term with a parameter m = 2−n = 0 is discussed.
Resumo:
The attached file is created with Scientific Workplace Latex
Resumo:
The problem of computing the effective nonrelativistic potential U-D for the interaction of charged-scalar bosons, within the context of D-dimensional electromagnetism with a cutoff, is reduced to quadratures. It is shown that U-3 cannot bind a pair of identical charged-scalar bosons; nevertheless, numerical calculations indicate that boson-boson bound states do exist in the framework of three-dimensional higher-derivative electromagnetism augmented by a topological Chern-Simons term.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Baseando-se em um sistema com um grau de liberdade, é apresentada neste trabalho a equação de movimento, bem como a sua resolução através das Transformadas de Fourier e da Transformada Rápida de Fourier (FFT). Através da análise da forma como são feitas as integrações nas transformadas, foram estudados e aplicados os ponderadores de Newton-Cotes na resolução da equação de movimento, de forma a aumentar substancialmente a precisão dos resultados em comparação com a forma convencional da Transformada de Fourier.