976 resultados para qtl mapping
Resumo:
We have tested the efficacy of putative microsatellite single sequence repeat (SSR) markers, previously identified in a 2-49 (Gluyas Early/Gala) × Janz doubled haploid wheat (Triticum aestivum) population, as being linked to partial seedling resistance to crown rot disease caused by Fusarium pseudograminearum. The quantitative trait loci (QTLs) delineated by these markers have been tested for linkage to resistance in an independent Gluyas Early × Janz doubled haploid population. The presence of a major QTL on chromosome 1DL (QCr.usq-1D1) and a minor QTL on chromosome 2BS (QCr.usq-2B1) was confirmed. However, a putative minor QTL on chromosome 2A was not confirmed. The QTL on 1D was inherited from Gluyas Early, a direct parent of 2-49, whereas the 2B QTL was inherited from Janz. Three other putative QTLs identified in 2-49 × Janz (on 1AL, 4BL, and 7BS) were inherited by 2-49 from Gala and were not able to be confirmed in this study. The screening of SSR markers on a small sample of elite wheat genotypes indicated that not all of the most tightly linked SSR markers flanking the major QTLs on 1D and 1A were polymorphic in all backgrounds, indicating the need for additional flanking markers when backcrossing into some elite pedigrees. Comparison of SSR haplotypes with those of other genotypes exhibiting partial crown rot resistance suggests that additional, novel sources of crown rot resistance are available.
Resumo:
A genetic linkage map, based on a cross between the synthetic hexaploid CPI133872 and the bread wheat cultivar Janz, was established using 111 F1-derived doubled haploid lines. The population was phenotyped in multiple years and/or locations for seven disease resistance traits, namely, Septoria tritici blotch (Mycosphaeralla graminicola), yellow leaf spot also known as tan spot (Pyrenophora tritici-repentis), stripe rust (Puccinia striiformis f. sp. tritici), leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici) and two species of root-lesion nematode (Pratylenchyus thornei and P. neglectus). The DH population was also scored for coleoptile colour and the presence of the seedling leaf rust resistance gene Lr24. Implementation of a multiple-QTL model identified a tightly linked cluster of foliar disease resistance QTL in chromosome 3DL. Major QTL each for resistance to Septoria tritici blotch and yellow leaf spot were contributed by the synthetic hexaploid parent CPI133872 and linked in repulsion with the coincident Lr24Sr24/ locus carried by parent Janz. This is the first report of linked QTL for Septoria tritici blotch and yellow leaf spot contributed by the same parent. Additional QTL for yellow leaf spot were detected in 5AS and 5BL. Consistent QTL for stripe rust resistance were identified in chromosomes 1BL, 4BL and 7DS, with the QTL in 7DS corresponding to the Yr18Lr34/ region. Three major QTL for P. thornei resistance (2BS, 6DS, 6DL) and two for P. neglectus resistance (2BS, 6DS) were detected. The recombinants combining resistance to Septoria tritici blotch, yellow leaf spot, rust diseases and root-lesion nematodes from parents CPI133872 and Janz constitute valuable germplasm for the transfer of multiple disease resistance into new wheat cultivars.
Resumo:
In Laminaria japonica Aresch breeding practice, two quantitative traits, frond length (FL) and frond width (FW), are the most important phenotypic selection index. In order to increase the breeding efficiency by integrating phenotypic selection and marker-assisted selection, the first set of QTL controlling the two traits were determined in F-2 family using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Two prominent L. japonicas inbred lines, one with "broad and thin blade" characteristics and another with "long and narrow blade" characteristics, were applied in the hybridization to yield the F-2 mapping population with 92 individuals. A total of 287 AFLP markers and 11 SSR markers were used to construct a L. japonica genetic map. The yielded map was consisted of 28 linkage groups (LG) named LG1 to LG28, spanning 1,811.1 cM with an average interval of 6.7 cM and covering the 82.8% of the estimated genome 2,186.7 cM. While three genome-wide significant QTL were detected on LG1 (two QTL) and LG4 for "FL," explaining in total 42.36% of the phenotypic variance, two QTL were identified on LG3 and LG5 for the trait "FW," accounting for the total of 36.39% of the phenotypic variance. The gene action of these QTL was additive and partially dominant. The yielded linkage map and the detected QTL can provide a tool for further genetic analysis of two traits and be potential for maker-assisted selection in L. japonica breeding.
Resumo:
Background qtl.outbred is an extendible interface in the statistical environment, R, for combining quantitative trait loci (QTL) mapping tools. It is built as an umbrella package that enables outbred genotype probabilities to be calculated and/or imported into the software package R/qtl. Findings Using qtl.outbred, the genotype probabilities from outbred line cross data can be calculated by interfacing with a new and efficient algorithm developed for analyzing arbitrarily large datasets (included in the package) or imported from other sources such as the web-based tool, GridQTL. Conclusion qtl.outbred will improve the speed for calculating probabilities and the ability to analyse large future datasets. This package enables the user to analyse outbred line cross data accurately, but with similar effort than inbred line cross data.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Oil content and grain yield in maize are negatively correlated, and so far the development of high-oil high-yielding hybrids has not been accomplished. Then a fully understand of the inheritance of the kernel oil content is necessary to implement a breeding program to improve both traits simultaneously. Conventional and molecular marker analyses of the design III were carried out from a reference population developed from two tropical inbred lines divergent for kernel oil content. The results showed that additive variance was quite larger than the dominance variance, and the heritability coefficient was very high. Sixteen QTL were mapped, they were not evenly distributed along the chromosomes, and accounted for 30.91% of the genetic variance. The average level of dominance computed from both conventional and QTL analysis was partial dominance. The overall results indicated that the additive effects were more important than the dominance effects, the latter were not unidirectional and then heterosis could not be exploited in crosses. Most of the favorable alleles of the QTL were in the high-oil parental inbred, which could be transferred to other inbreds via marker-assisted backcross selection. Our results coupled with reported information indicated that the development of high-oil hybrids with acceptable yields could be accomplished by using marker-assisted selection involving oil content, grain yield and its components. Finally, to exploit the xenia effect to increase even more the oil content, these hybrids should be used in the Top Cross((TM)) procedure.
Resumo:
Background The genetic mechanisms underlying interindividual blood pressure variation reflect the complex interplay of both genetic and environmental variables. The current standard statistical methods for detecting genes involved in the regulation mechanisms of complex traits are based on univariate analysis. Few studies have focused on the search for and understanding of quantitative trait loci responsible for gene × environmental interactions or multiple trait analysis. Composite interval mapping has been extended to multiple traits and may be an interesting approach to such a problem. Methods We used multiple-trait analysis for quantitative trait locus mapping of loci having different effects on systolic blood pressure with NaCl exposure. Animals studied were 188 rats, the progenies of an F2 rat intercross between the hypertensive and normotensive strain, genotyped in 179 polymorphic markers across the rat genome. To accommodate the correlational structure from measurements taken in the same animals, we applied univariate and multivariate strategies for analyzing the data. Results We detected a new quantitative train locus on a region close to marker R589 in chromosome 5 of the rat genome, not previously identified through serial analysis of individual traits. In addition, we were able to justify analytically the parametric restrictions in terms of regression coefficients responsible for the gain in precision with the adopted analytical approach. Conclusion Future work should focus on fine mapping and the identification of the causative variant responsible for this quantitative trait locus signal. The multivariable strategy might be valuable in the study of genetic determinants of interindividual variation of antihypertensive drug effectiveness.
Resumo:
An important aspect of the QTL mapping problem is the treatment of missing genotype data. If complete genotype data were available, QTL mapping would reduce to the problem of model selection in linear regression. However, in the consideration of loci in the intervals between the available genetic markers, genotype data is inherently missing. Even at the typed genetic markers, genotype data is seldom complete, as a result of failures in the genotyping assays or for the sake of economy (for example, in the case of selective genotyping, where only individuals with extreme phenotypes are genotyped). We discuss the use of algorithms developed for hidden Markov models (HMMs) to deal with the missing genotype data problem.
Resumo:
The standard variance components method for mapping quantitative trait loci is derived on the assumption of normality. Unsurprisingly, statistical tests based on this method do not perform so well if this assumption is not satisfied. We use the statistical concept of copulas to relax the assumption of normality and derive a test that can perform well under any distribution of the continuous trait. In particular, we discuss bivariate normal copulas in the context of sib-pair studies. Our approach is illustrated by a linkage analysis of lipoprotein(a) levels, whose distribution is highly skewed. We demonstrate that the asymptotic critical levels of the test can still be calculated using the interval mapping approach. The new method can be extended to more general pedigrees and multivariate phenotypes in a similar way as the original variance components method.
Resumo:
We constructed genetic linkage maps for the bay scallop Argopecten irradians using AFLP and microsatellite markers and conducted composite interval mapping (CIM) of body-size-related traits. Three hundred seventeen AFLP and 10 microsatellite markers were used for map construction. The female parent map contained 120 markers in 15 linkage groups, spanning 479.6 cM with an average interval of 7.0 cM. The male parent map had 190 markers in 17 linkage groups, covering 883.8 cM at 7.2 cM per marker. The observed coverage was 70.4% for the female and 81.1% for the male map. Markers that were distorted toward the same direction were closely linked to each other on the genetic maps, suggesting the presence of genes important for survival. Six size-related traits, shell length, shell height, shell width, total weight, soft tissue weight, and shell weight, were measured for QTL mapping. The size data were significantly correlated with each other. We subjected the data, log transformed firstly, to a principle component analysis and use the first principle component for QTL mapping. CIM analysis revealed one significant QTL (LOD=2.69, 1000 permutation, P<0.05) in linkage group 3 on the female parent map. The mapping of size-related QTL in this study raises the possibility of improving the growth of bay scallops through marker-assisted selection. (c) 2007 Published by Elsevier B.V.
Resumo:
Multiparental cross designs for mapping quantitative trait loci (QTL) in crops are efficient alternatives to conventional biparental experimental populations because they exploit a broader genetic basis and higher mapping resolution. We describe the development and deployment of a multiparental recombinant inbred line (RIL) population in durum wheat (Triticum durum Desf.) obtained by crossing four elite cultivars characterized by different traits of agronomic value. A linkage map spanning 2,663 cM and including 7,594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs with a wheat-dedicated 90k SNP chip. A cluster file was developed for correct allele calling in the framework of the tetraploid durum wheat genome. Based on phenotypic data collected over four field experiments, a multi-trait quantitative trait loci (QTL) analysis was carried out for 18 traits of agronomic relevance (including yield, yield-components, morpho-physiological and seed quality traits). Across environments, a total of 63 QTL were identified and characterized in terms of the four founder haplotypes. We mapped two QTL for grain yield across environments and 23 QTL for grain yield components. A novel major QTL for number of grain per spikelet/ear was mapped on chr 2A and shown to control up to 39% of phenotypic variance in this cross. Functionally different QTL alleles, in terms of direction and size of genetic effect, were distributed among the four parents. Based on the occurrence of QTL-clusters, we characterized the breeding values (in terms of effects on yield) of most of QTL for heading and maturity as well as yield component and quality QTL. This multiparental RIL population provides the wheat community with a highly informative QTL mapping resource enabling the dissection of the genetic architecture of multiple agronomic relevant traits in durum wheat.
Resumo:
Background: A random QTL effects model uses a function of probabilities that two alleles in the same or in different animals at a particular genomic position are identical by descent (IBD). Estimates of such IBD probabilities and therefore, modeling and estimating QTL variances, depend on marker polymorphism, strength of linkage and linkage disequilibrium of markers and QTL, and the relatedness of animals in the pedigree. The effect of relatedness of animals in a pedigree on IBD probabilities and their characteristics was examined in a simulation study. Results: The study based on nine multi-generational family structures, similar to a pedigree structure of a real dairy population, distinguished by an increased level of inbreeding from zero to 28 % across the studied population. Highest inbreeding level in the pedigree, connected with highest relatedness, was accompanied by highest IBD probabilities of two alleles at the same locus, and by lower relative variation coefficients. Profiles of correlation coefficients of IBD probabilities along the marked chromosomal segment with those at the true QTL position were steepest when the inbreeding coefficient in the pedigree was highest. Precision of estimated QTL location increased with increasing inbreeding and pedigree relatedness. A method to assess the optimum level of inbreeding for QTL detection is proposed, depending on population parameters. Conclusions: An increased overall relationship in a QTL mapping design has positive effects on precision of QTL position estimates. But the relationship of inbreeding level and the capacity for QTL detection depending on the recombination rate of QTL and adjacent informative marker is not linear. © 2010 Freyer et al., licensee BioMed Central Ltd.
Resumo:
QTL mapping methods for complex traits are challenged by new developments in marker technology, phenotyping platforms, and breeding methods. In meeting these challenges, QTL mapping approaches will need to also acknowledge the central roles of QTL by environment interactions (QEI) and QTL by trait interactions in the expression of complex traits like yield. This paper presents an overview of mixed model QTL methodology that is suitable for many types of populations and that allows predictive modeling of QEI, both for environmental and developmental gradients. Attention is also given to multi-trait QTL models which are essential to interpret the genetic basis of trait correlations. Biophysical (crop growth) model simulations are proposed as a complement to statistical QTL mapping for the interpretation of the nature of QEI and to investigate better methods for the dissection of complex traits into component traits and their genetic controls.
Resumo:
BACKGROUND:
We have recently identified a number of Quantitative Trait Loci (QTL) contributing to the 2-fold muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of the tibialis anterior (TA) muscle of each strain by RNA-Seq.
RESULTS:13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed genes that we term the LG/J and SM/J Regulatory Network (LSRN). The integration of the QTL, transcriptome and the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10) residing within five QTL regions, which were either polymorphic or differentially expressed between the two strains and are strong candidates for quantitative trait genes (QTGs) underlying muscle mass. The insight gained from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher oxidative potential of the SM/J compared to the LG/J strain (p<0.03).
CONCLUSION:Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs.