874 resultados para pyrolytic graphite modified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1. 5 V into 0. 1 mol-L-1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), Delta EAA-DA = 222 mV-, Delta EAA-UA = 360 mV and Delta EDA-UA=138mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 x 10(-6) mol L-1 for uric acid, 1.3x10-(5) molL(-1) for ascorbic acid and 1.1 X 10(-7) mol L-1 for dopamine, with sensitivities of (7.7 +/- 0.5), (0.061 +/- 0.001) and (9.5 +/- 0.05)A mol(-1) cm(-2), respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low-cost electrochemical method was developed for the determination of trace-level of methyl parathion (MP) based on the properties of graphite-modified basal plane pyrolytic graphite electrode (graphite-bppg). A combination of graphite-bppg with square-wave voltammetric (SWV) analysis resulted in an original, sensitive and selective electrochemical method for determination of MP pesticide in drinking water. The electrode was constructed and the electrochemical behavior of MP was studied. Immobilization is achieved via film modification from dispersing graphite powder in deionized water and through pipeting a small volume onto the electrode surface allowing the solvent to volatilize. The strong affinity of the graphite modifier for the phosphorous group of the MP allowed the deposition of a significant amount of MP in less than 60 seconds. The cyclic voltammetric results indicate that the graphite-bppg electrode can enhance sensitivity in current intensity towards the quasi-reversible redox peaks of the products of the cathodic reduction of the nitro group at negative potential (peak I = 0.077 V and peak II = –0.062 V) and that the cathodic irreversible peak (peak III = –0.586 V) in comparison with bare bppg electrode and is also adsorption controlled process. Under optimized conditions, the concentration range and detection limit for MP pesticide are respectively 79.0 to 263.3 mmol L-1 and 3.00 mmol L-1. The proposed method was successfully applied to MP determination in drinking water and the performance of this electrochemical sensor has been evaluated in terms of analytical figures of merit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was carried out an electrochemical study of the cobalt electrodeposition onto HOPG electrode from an aqueous solution containing 10-2 M of CoSO4 + 1M (NH4)2SO4. Nucleation parameters such as nucleation rate, density of active nucleation sites, saturation nucleus and the rate constant of the proton reduction reaction (kPR) were determined from potentiostatic studies. An increase in kPR values with the decrease in the applied potential suggested a competition between H+ and Co2+ by the active sites on the surface. The ΔG energy calculated for the formation of stable nucleus was 8.21x10-21 J/nuclei. The AFM study indicated the formation of small clusters of 50-400 nm in diameter and 2-120 nm in height.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In present work, we analyzed the copper electrodeposition onto GCE (System I) and HOPGE (System II) from perchlorate solutions. The current density transients obtained from system I and II were well described through a kinetic mechanism that involves four different contributions: (a) a Langmuir type adsorption process, b) an electron transfer from Cu2+→Cu+, (c) a 3D nucleation limited by a mass transfer reaction and (d) a proton reduction process. It was observed that the values of the nucleation rate, the number of active nucleation sites were increased with the overpotential and they are bigger onto GCE in comparison with HOPGE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow injection analysis (FIA) with amperometric detection was employed for the quantification of N-acetylcysteine (NAC) in pharmaceutical formulations, utilizing an ordinary pyrolytic graphite (OPG) electrode modified with cobalt phthalocyanine (CoPc). Cyclic voltammetry was used in preliminary studies to establish the best conditions for NAC analysis. In FIA-amperometric experiments the OPG-CoPc electrode exhibited sharp and reproducible current peaks over a wide linear working range (5.0 x 10(-5)-1.0 x 10(-3) mol L(-1)) in 0.1 mol L(-1) NaOH solution. High sensitivity (130 mA mol(-1) cm(2)) and a low detection limit (9.0 x 10(-7) mol L(-1)) were achieved using the sensor. The repeatability (R.S.D.%) for 13 successive flow injections of a solution containing 5.0 x 10(-4) mol L(-1) NAC was 1.1%. The new procedure was applied in analyses of commercial pharmaceutical products and the results were in excellent agreement with those obtained using the official titrimetric method. The proposed amperometric method is highly suitable for quality control analyses of NAC in pharmaceuticals since it is rapid, precise and requires much less work than the recommended titrimetric method. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anodic oxidation of ascorbic acid on a ruthenium oxide hexacyanoferrate modified electrode was characterized by cyclic voltammetry. On this modified surface, the electrocatalytic process allows the determination of ascorbic acid to be performed at 0.0 V and pH 6.9 with a limit of detection of 2.2 mu M in a flow injection configuration. Under this experimental condition, no interference from glucose, nitrite and uric acid was noticed. Lower detection limit values were obtained by measuring flow injection analysis (FIA) responses at 0.4 V (0.14 mu M), but a concurrent loss of selectivity is expected at this more positive potential. Under optimal FIA operating conditions, the linear response of the method was extended up to 1 mM ascorbic acid. The repeatability of the method for injections of a 1.0 mM ascorbic acid solution was 2.0% (n=10). The usefulness of the method was demonstrated by an addition-recovery experiment with urine samples and the recovered values were in the 98-104% range. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 'blue copper' enzyme bilirubin oxidase from Myrothecium verrucaria shows significantly enhanced adsorption on a pyrolytic graphite 'edge' (PGE) electrode that has been covalently modified with naphthyl-2-carboxylate functionalities by diazonium coupling. Modified electrodes coated with bilirubin oxidase show electrocatalytic voltammograms for the direct, four-electron reduction of O(2) by bilirubin oxidase with up to four times the current density of an unmodified PGE electrode. Electrocatalytic voltammograms measured with a rapidly rotating electrode (to remove effects of O(2) diffusion limitation) have a complex shape (an almost linear dependence of current on potential below pH 6) that is similar regardless of how PGE is chemically modified. Importantly, the same waveform is observed if bilirubin oxidase is adsorbed on Au(111) or Pt(111) single-crystal electrodes (at which activity is short-lived). The electrocatalytic behavior of bilirubin oxidase, including its enhanced response on chemically-modified PGE, therefore reflects inherent properties that do not depend on the electrode material. The variation of voltammetric waveshapes and potential-dependent (O(2)) Michaelis constants with pH and analysis in terms of the dispersion model are consistent with a change in rate-determining step over the pH range 5-8: at pH 5, the high activity is limited by the rate of interfacial redox cycling of the Type 1 copper whereas at pH 8 activity is much lower and a sigmoidal shape is approached, showing that interfacial electron transfer is no longer a limiting factor. The electrocatalytic activity of bilirubin oxidase on Pt(111) appears as a prominent pre-wave to electrocatalysis by Pt surface atoms, thus substantiating in a single, direct experiment that the minimum overpotential required for O(2) reduction by the enzyme is substantially smaller than required at Pt. At pH 8, the onset of O(2) reduction lies within 0.14 V of the four-electron O(2)/2H(2)O potential.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the influence of a hydrogenated disordered carbon (a-C:H) layer on the nucleation of diamond. Substrates c-Si<100>, SiAlON, and highly oriented pyrolytic graphite {0001} were used in this study. The substrate surfaces were characterized with Auger electron spectroscopy (AES) while diamond growth was followed with Raman spectroscopy and scanning electron microscopy (SEM). It was found that on silicon and SiAlON substrates the presence of the a-C:H layer enabled diamond to grow readily without any polishing treatment. Moreover, more continuous diamond films could be grown when the substrate was polished with diamond powder prior to the deposition of the a-C:H layer. This important result suggests that the nucleation of diamond occurs readily on disordered carbon surfaces, and that the formation of this type of layer is indeed one step in the diamond nucleation mechanism. Altogether, the data refute the argument that silicon defects play a direct role in the nucleation process. Auger spectra revealed that for short deposition times and untreated silicon surfaces, the deposited layer corresponds to an amorphous carbon layer. In these cases, the subsequent diamond nucleation was found to be limited. However, when the diamond nucleation density was found to be high; i.e., after lengthy deposits of a¿C:H or after diamond polishing, the Auger spectra suggested diamondlike carbon layers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The alizarin red S (ARS) has been used as a spectrophotometric reagent of several metals for a long time. Now this alizarin has been used as modifier agent of electrodes, for voltammetric analyses. In this work cyclic voltammetry experiments was accomplished on closed circuit, with the objective of studying the voltammetric behavior of alizarin red S adsorbed and of its copper complex, on the surface of the pyrolytic graphite electrode. These studies showed that ARS strongly adsorbs on the surface of this electrode. This adsorption was used to immobilize ions copper(II) from the solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A tubular electrochemical flow-cell for iridium deposition on the inner surface of pyrolytic graphite tube for permanent chemical modification is proposed. A transversal heated graphite tube was used as working electrode, a cylindrical piece of graphite inserted into the graphite tube as auxiliary electrode, and a micro Ag/AgCl(sat) as reference electrode. Iridium solution in 1.0 mol L-1 HCl, flowing at 0.55 mL min-1 for 60 min was used to perform the electrochemical modification. The applied potential to the flow-cell was - 0.700 V vs Ag/AgCl. Scanning electron microscopy images were taken for thermal and electrochemical modified graphite surface in order to evaluate the iridium distribution. Selenium hydride trapping was used to verify the performance of the proposed permanent chemical modifier.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical "leveling" concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper dissolution and deposition processes. Complete reduction of the aromatic heterocycle finally leads to the 3D precipitation of hydrophobic reaction products. 3D clusters of this SAF precipitate are discussed as the active structural motif for the suppressing effect of these dyes. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrocopolymerization of carbazole and acrylamide on highly oriented pyrolytic graphite (HOPG) from ACN solutions via cyclovoltammetry (CV) was studied in order to evaluate the possibility to deposit uniform and thin but pinhole-free and still reactive coatings onto graphite-like substrates. The morphology of the coatings was investigated using atomic force microscopy and the coating thicknesses and optical parameters were measured using ellipsometry. It was found that under the chosen conditions thin (coating thickness hf>180 nm) and relatively smooth (root mean square surface roughness RMS<150 nm) P(Cz-co-AAm)-coatings exhibiting a uniform globuoidal morphology can be deposited onto graphite. From a certain coating thickness (hf>50 nm) no pinholes could be detected. It was found that the thickness of the deposited coatings increases almost linearly with increasing number of CV-cycles while keeping all other experimental parameters (scan rate and comonomer concentration ratio) constant. No influence of the comonomer concentration ratio on the film thickness and coating appearance could be observed, however, at quite low initial concentrations. However, the CV-scanning rate has quite a significant influence on the thickness of the deposited coatings. Higher scan rates (100 mV/s) result in thin (hf≈22 nm) coatings whereas at lower scan rates (<50 mV/s) coatings with thicknesses of approximately 50 nm were obtained. The optical coating parameters (the refractive index n and extinction coefficient k) seem to be independent of the deposition parameters and therefore averaged values of n̄=1.54±0.03 and k̄=0.08±0.03 were obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sulfite dehydrogenase from Starkeya novella is an alphabeta heterodimer comprising a 40.6 kDa subunit (containing the Mo cofactor) and a smaller 8.8 kDa heme c subunit. The enzyme catalyses the oxidation of sulfite to sulfate with the natural electron acceptor being cytochrome c(550). Its catalytic mechanism is thought to resemble that found in eukaryotic sulfite oxiclases. Using protein film voltammetry and redox potentiometry, we have identified both Mo- and heme-centered redox responses from the enzyme immobilized on a pyrolytic graphite working electrode: E-m,E-8 (Fe-III/II) +177 mV; E-m,E-8 (Mo-VI/V) +211 mV and E(m,)8 (Mo-V/IV) -118 mV vs NHE; Upon addition of sulfite to the electrochemical cell a steady-state voltammogram is observed and an apparent Michaelis constant (K-m) of 26(l) muM was determined for the enzyme immobilized on the working electrode surface, which is comparable with the value obtained from solution assays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus catalyzes the hydroxylation of xanthine to uric acid with NAD(+) as the electron acceptor. R. capsulatus XDH forms an (alphabeta)(2) heterotetramer and is highly homologous to homodimeric eukaryotic XDHs. The crystal structures of bovine XDH and R. capsulatus XDH showed that the two proteins have highly similar folds; however, R. capsulatus XDH is at least 5 times more active than bovine XDH and, unlike mammalian XDH, does not undergo the conversion to the oxidase form. Here we demonstrate electrocatalytic activity of the recombinant enzyme, expressed in Escherichia coli, while immobilized on an edge plane pyrolytic graphite working electrode. Furthermore, we have determined all redox potentials of the four cofactors (Mo-VI/V, Mo-V/IV, FAD/FADH, FADH/FADH(2) and two distinct [2Fe-2S](2+/+) clusters) using a combination of potentiometric and voltammetric methods. A novel feature identified in catalytic voltammetry of XDH concerns the potential for the onset of catalysis (ca. 400 mV), which is at least 600 mV more positive than that of the highest potential cofactor. This unusual observation is explained on the basis of a pterin-associated oxidative switch during voltammetry that precedes catalysis.