5 resultados para pyrobitumen


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic geochemical and visual kerogen analyses were carried out on approximately 50 samples from Leg 81 (Rockall Plateau, North Atlantic). The sediments are from four sites (Sites 552-555), Pleistocene to Paleocene in age, and represent significantly different depositional environments and sources of organic matter. The Pleistocene glacial-interglacial cycles show differences in sedimentary organic matter based on Rock-Eval pyrolysis, organic phosphorus, and pyrolysis/mass-spectrometry analyses. Glacial samples contain more organic carbon, with a larger proportion of reworked organic matter. This probably reflects increased erosion of continental and shelf areas as a result of low sea level stands. Inter glacial samples contain a larger proportion of marine organic matter as determined by organic phosphorus and pyrolysis analyses. This immature, highly oxidized marine organic matter may be associated with the skeletal organic matrix of calcareous organisms. In addition, Rock-Eval data indicate no significant inorganic-carbonate contribution to the S3 pyrolysis peak. The Pliocene-Miocene sediments consist of pelagic, biogenic carbonates. The organic matter is similar to that of the Pleistocene interglacial periods; a mixture of oxidized marine organic matter and reworked, terrestrial detritus. The Paleocene-Oligocene organic matter reflects variations in source and depositional factors associated with the isolation of Rockall from Greenland. Paleocene sediments contain primarily terrestrial organic matter with evidence of in situ thermal stress resulting from interbedded lava flows. Late Paleocene and early Eocene organic matter suggests a highly oxidized marine environment, with major periods of deposition of terrestrially derived organic matter. These fluctuations in organic-matter type are probably the result of episodic shallowing and deepening of Rockall Basins. The final stage of Eocene/Oligocene sedimentation records the accelerating subsidence of Rockall and its isolation from terrestrial sources (Rockall and Greenland). This is shown by the increasingly marine character of the organic matter. The petroleum potential of sediments containing more than 0.5% organic carbon is poor because of their thermal immaturity and their highly oxidized and terrestrial organic-matter composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyses of 40 carbonate core samples - 27 from Site 535, 12 from Site 540, and 1 from Site 538A - have confirmed many of the findings of the Shipboard Scientific Party. The samples, all but one Early to mid-Cretaceous in age (Berriasian to Cenomanian), reflect sequences of cyclically anoxic and oxic depositional environments. They are moderately to very dark colored, dominantly planar-parallel, laminated lime mudstones. Most show the effects of intense mechanical compaction. Visual kerogen characteristics and conventional Rock-Eval parameters indicate that these deep basinal carbonates contain varying mixtures of thermally immature kerogen derived from both marine and terrigenous precursors. However, variations in kerogen chemistry are evident upon analysis of the pyrolysis mass spectral data in conjunction with the other geochemical analyses. Particularly diagnostic is the reduction index, Rl, a measure of H2S produced during pyrolysis. Total organic carbon, TOC, ranges from 0.6 to 6.6%, with an overall average of 2.4%. Average TOCs for these fine-grained mudstones are: late Eocene 2.5% (1 sample), Cenomanian 2.2% (6), Albian 2.0% (10), Aptian 1.3% (1), Barremian-Hauterivian 2.8% (11), late Valanginian 4.8% (3), Berriasian-early Valanginian 1.6% (7). Most of the carbonates have source-potential ratings of fair to very good of predominantly oil-prone to mixed kerogen, with only a few gas-prone samples. The ratings correlate well with the inferred depositional environments, i.e., whether oxic or anoxic. Several new organic-geochemical parameters, especially Rl, based on pyrolysis mass spectrometry of powdered whole-rock samples, support this view. Tar from fractures in laminated to bioturbated limestones of Unit IV (late Valanginian) at 535-58-4, 19-20 cm (530 m sub-bottom) appears to be mature, biodegraded, and of migrated rather than on site indigenous origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Date of Acceptance: 08/05/2015 Date of online publication: 16/05/2015 Elemental and isotopic data, thin and polished sections used in this contribution were obtained through two large umbrella-projects with grants provided by the Norwegian Research Council grant 191530/V30 to VAM and NERC grant NE/G00398X/1 to AEF. We thank A. Črne, the editor A. Strasser as well as one anonymous reviewer and D. Papineau for providing their valuable criticism and suggestions.