12 resultados para pulvinus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Legume pulvini have a clearly delimited endodermis, whose variable content has been associated with the velocity and type of leaf movement: pulvini in leaves with fast nastic movement contain starch grains; pulvini in leaves with slow nastic movements have calcium oxalate crystals as well as starch grains in the endodermis. However, the studies carried out to date have involved few legume species. This study therefore purported to examine the consistency of this hypothesis in other legumes. Thus, the structure and content of the pulvinus endodermal cells of nine legumes of the Brazilian cerrado, with different types and velocities of leaf movement, were investigated: slow nyctinastic and heliotropic movements (Bauhinia rufa, Copaifera langsdorffii, Senna rugosa - Caesalpinioideae; Andira humilis and Dalbergia miscolobium - Faboideae; Stryphnodendron polyphyllum - Mimosoideae), slow heliotropic movement (Zornia diphylla - Faboideae), and fast seismonastic and slow nyctinastic and heliotropic movements (Mimosa rixosa and Mimosa flexuosa - Mimosoideae). Samples were prepared following standard plant anatomy and ultrastructure techniques. The endodermis of all the species contains starch grains. In the species displaying only slow movements, calcium oxalate prismatic crystals were observed in addition to starch grains, except in Zornia diphylla. in conclusion, oxalate crystals occur only in endodermal cells of pulvini that display slow movements, while starch grains are always present in pulvinus endodermal cells of plants with any kind of movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies on legume pulvini suggest that the vascular system plays an important role in the redistribution of ions and transmission of stimuli during leaf's movements. However, the number of anatomical and ultrastructural studies is limited to few species. The aim of this paper is to investigate the structure and cellular features of the pulvinus vascular system of nine legume species from Brazilian cerrado, looking for structural traits pointing to its participation in the leaf's movements. Samples were excised from the medial region of opened pulvinus of Bauhinia rufa, Copaifera langsdorffii, Senna rugosa (Caesalpinioideae), Andira humilis, Dalbergia miscolobium, Zornia dilphylla (Faboideae), Mimosa rixosa, Mimosa flexuosa and Stryphnodendron polyphyllum (Mimosoideae), and were prepared following light microscopy, transmission electron microscopy and histochemical standard techniques. The vascular system occupies a central position, comprises phloem and xylem and is delimited by a living sheath of septate fibers in all the species studied. This living cells sheath connects the cortex to the vascular tissues via numerous plasmodesmata. The absence of fibers and sclereids, the presence of phenolic idioblasts and the abundance and diversity of protein inclusions in the sieve tube members are remarkable features of the phloem. Pitted vessel elements, parenchyma cells with abundant cytoplasm and living fibriform elements characterize the xylem. The lack of lignified tissues and extensive symplastic continuity by plasmodesmata are remarkable features of the vascular system of pulvini of the all studied species. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work relates the occurrence and distribution of collenchyma in Panicum maximum Jacq. P. maximum leaves were collected at different phases of development and sampled from both the base of the sheath and from the sheath-leaf blade transition area. For the stems, the study was made by using hand-cut sections of the internodal base. In the leaves, analyses of serial sections showed, at the base and sheath-leaf blade transition area, a sudden change of tissue at vascular bundle. The vascular bundles are surrounded by sclerenchyma, both in the sheath and the leaf blade, as well as by fibrous threads that occur on the adaxial side of the central bundles. However, at the base of the sheath and at the sheath-leaf blade transition area, sclerenchyma was substituted for collenchyma. In the stem, the substitution of sclerenchyma associated with vascular bundles for collenchyma occurs at the base of the internode, in the pulvinus region. The analyses from transmission electron microscopy showed the presence of lamellated cell wall and active protoplast in collenchyma cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Botânica) - IBB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abscission explants of bean (Phaseolus vulgaris L.) were treated with ethylene to induce cell separation at the primary abscission zone. After several days of further incubation of the remaining petiole in endogenously produced ethylene, the distal two-thirds of the petiole became senescent, and the remaining (proximal) portion stayed green. Cell-to-cell separation (secondary abscission) takes place precisely at the interface between the senescing yellow and the enlarging green cells. The expression of the abscission-associated isoform of β-1,4-glucanhydrolase, the activation of the Golgi apparatus, and enhanced vesicle formation occurred only in the enlarging cortical cells on the green side. These changes were indistinguishable from those that occur in normal abscission cells and confirm the conversion of the cortical cells to abscission-type cells. Secondary abscission cells were also induced by applying auxin to the exposed primary abscission surface after the pulvinus was shed, provided ethylene was added. Then, the orientation of development of green and yellow tissue was reversed; the distal tissue remained green and the proximal tissue yellowed. Nevertheless, separation still occurred at the junction between green and yellow cells and, again, it was one to two cell layers of the green side that enlarged and separated from their senescing neighbors. Evaluation of Feulgen-stained tissue establishes that, although nuclear changes occur, the conversion of the cortical cell to an abscission zone cell is a true transdifferentiation event, occurring in the absence of cell division.