950 resultados para pulmonary responsiveness
Resumo:
Beta-2-agonists have been widely used by asthmatic subjects to relieve their obstructive symptoms. However, there are reports that continuous use could lead to loss of bronchial protection and exacerbation of asthma symptoms. We evaluated the effect of two regimens of salbutamol administration (twice and five times a week) in a model of chronic airway inflammation in male Hartley guinea pigs (protocol starting weight: 286 ± 30 g) induced by repeated exposures to aerosols of ovalbumin (OVA). After sensitization, guinea pigs were exposed to aerosols of 0.1 mg/ml salbutamol solution twice a week (OVA + S2x, N = 7) or five times a week (OVA + S5x, N = 8). We studied allergen-specific (OVA inhalation time) and -nonspecific (response to methacholine) respiratory system responsiveness. Seventy-two hours after the last OVA challenge, guinea pigs were anesthetized and tracheostomized, respiratory system resistance and elastance were measured and a dose-response curve to inhaled methacholine chloride was obtained. Specific IgG1 was also quantified by the passive cutaneous anaphylactic technique. OVA-sensitized guinea pigs (N = 8) showed reduction of the time of OVA exposure before the onset of respiratory distress, at the 5th, 6th and 7th exposures (P < 0.001). The OVA + S2x group (but not the OVA + S5x group) showed a significant increase in OVA inhalation time. There were no significant differences in pulmonary responsiveness to methacholine among the experimental groups. OVA + S2x (but not OVA + S5x) animals showed a decrease in the levels of IgG1-specific anaphylactic antibodies compared to the OVA group (P < 0.05). Our results suggest that, in this experimental model, frequent administration of ß2-agonists results in a loss of some of their protective effects against the allergen.
Resumo:
transition metals, which are involved in the pathological effects of PM. The objective of this study was to investigate the effects of intranasal administration of ROFA on pulmonary inflammation, pulmonary responsiveness, and excess mucus production in a mouse model of chronic pulmonary allergic inflammation. BALB/c mice received intraperitoneal injections of ovalbumin (OVA) solution (days 1 and 14). OVA challenges were performed on days 22, 24, 26, and 28. After the challenge, mice were intranasally instilled with ROFA. After forty-eight hours, pulmonary responsiveness was performed. Mice were sacrificed, and lungs were removed for morphometric analysis. OVA-exposed mice presented eosinophilia in the bronchovascular space (p < .001), increased pulmonary responsiveness (p < .001), and epithelial remodeling (p = .003). ROFA instillation increased pulmonary responsiveness (p = .004) and decreased the area of ciliated cells in the airway epithelium (p = .006). The combined ROFA instillation and OVA exposure induced a further increase in values of pulmonary responsiveness (p = .043) and a decrease in the number of ciliated cells in the airway epithelium (p = .017). PM exposure results in pulmonary effects that are more intense in mice with chronic allergic pulmonary inflammation.
Resumo:
We evaluated the influence of iNOS-derived NO on the mechanics, inflammatory, and remodeling process in peripheral lung parenchyma of guinea pigs with chronic pulmonary allergic inflammation. Animals treated or not with 1400W were submitted to seven exposures of ovalbumin in increasing doses. Seventy-two hours after the 7th inhalation, lung strips were suspended in a Krebs organ bath, and tissue resistance and elastance measured at baseline and after ovalbumin challenge. The strips were submitted to histopathological measurements. The ovalbumin-exposed animals showed increased maximal responses of resistance and elastance (p < 0.05), eosinophils counting (p < 0.001), iNOS-positive cells (p < 0.001), collagen and elastic fiber deposition (p < 0.05), actin density (p < 0.05) and 8-iso-PGF2 alpha expression (p < 0.001) in alveolar septa compared to saline-exposed ones. Ovalbumin-exposed animals treated with 1400 W had a significant reduction in lung functional and histopathological findings (p < 0.05). We showed that iNOS-specific inhibition attenuates lung parenchyma constriction, inflammation, and remodeling, suggesting NO-participation in the modulation of the oxidative stress pathway. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: Acute pancreatitis is an inflammatory disease characterized by local tissue injury and systemic inflammatory response leading to massive nitric oxide (NO) production and haemodynamic disturbances. Therefore, the aim of this work was to evaluate the vascular reactivity of pulmonary and mesenteric artery rings from rats submitted to experimental pancreatitis.Male Wistar rats were divided into three groups: saline (SAL); tauracholate (TAU) and phospholipase A(2) (PLA(2)). Pancreatitis was induced by administration of TAU or PLA(2) from Naja mocambique mocambique into the common bile duct of rats, and after 4 h of duct injection the animals were sacrificed. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP) and phenylephrine (PHE) in isolated mesenteric and pulmonary arteries were obtained. Potency (pEC(50)) and maximal responses (E(MAX)) were determined. Blood samples were collected for biochemical analysis.Results: In mesenteric rings, the potency for ACh was significantly decreased from animals treated with TAU (about 4.2-fold) or PLA(2) (about 6.9-fold) compared to saline group without changes in the maximal responses. Neither pEC(50) nor E(MAX) values for Ach were altered in pulmonary rings in any group. Similarly, the pEC(50) and the E(MAX) values for SNP were not changed in both preparations in any group. The potency for PHE was significantly decreased in rat mesenteric and pulmonary rings from TAU group compared to SAL group (about 2.2- and 2.69-fold, for mesenteric and pulmonary rings, respectively). No changes were seen in the E(MAX) for PHE. The nitrite/nitrate (NO(x)(-)) levels were markedly increased in animals submitted to acute pancreatitis as compared to SAL group, approximately 76 and 68% in TAU and PLA(2) protocol, respectively.Conclusion: Acute pancreatitis provoked deleterious effects in endothelium-dependent relaxing response for ACh in mesenteric rings that were strongly associated with high plasma NO(x)(-) levels as consequence of intense inflammatory responses. Furthermore, the subsensitivity of contractile response to PHE in both mesenteric and pulmonary rings might be due to the complications of this pathological condition in the early stage of pancreatitis.
Resumo:
The aim of this work was to evaluate the effect of physical preconditioning in the responsiveness of rat pulmonary rings submitted to lung ischemia/reperfusion (IR). Wistar rats were divided into three groups: Sedentary sham-operated (SD/SHAM); sedentary submitted to ischemia/reperfusion (SD/IR) and trained submitted to ischemia/reperfusion (TR/IR) animals. Exercise training consisted in sessions of 60 min/day running sessions, 5 days/week for 8 weeks. Left pulmonary IR was performed by occluding for 90 min and reperfusing for 120 min. After that, pulmonary arteries were isolated and concentration-response curves to acetylcholine (ACh), histamine (HIST), sodium nitroprusside (SNP), phenylephrine and U46619 were obtained. Neither potency (- log EC50) nor maximal responses (Emax) were modified for ACh and HIST in all groups. On the other hand, the potency for SNP was significantly increased in TR/IR group (8.23 ± 0.06) compared to SD/IR group (7.85 ± 0.04). Contractile responses mediated by a-adrenergic receptor were markedly decreased in IR groups (SD/IR: 6.75 ± 0.06 and TR/IR: 6.62 ± 0.04) compared to SD/SHAM (7.33 ± 0.05). No changes were seen for the U46619 in all groups. In conclusion, the present study shows that exercise training has no protective actions in the local blood vessel where the IR process takes place. © 2006 Elsevier Inc. All rights reserved.
Resumo:
We found that pulse pressure variation (PPV) did not predict volume responsiveness in patients with increased pulmonary artery pressure. This study tests the hypothesis that PPV does not predict fluid responsiveness during an endotoxin-induced acute increase in pulmonary artery pressure and right ventricular loading.
Resumo:
In critically ill patients, it is important to predict which patients will have their systemic blood flow increased in response to volume expansion to avoid undesired hypovolemia and fluid overloading. Static parameters such as the central venous pressure, the pulmonary arterial occlusion pressure, and the left ventricular end-diastolic dimension cannot accurately discriminate between responders and nonresponders to a fluid challenge. In this regard, respiratory-induced changes in arterial pulse pressure have been demonstrated to accurately predict preload responsiveness in mechanically ventilated patients. Some experimental and clinical studies confirm the usefulness of arterial pulse pressure as a useful tool to guide fluid therapy in critically ill patients.
Resumo:
The importance of lung tissue in asthma pathophysiology has been recently recognized. Although nitric oxide mediates smooth muscle tonus control in airways, its effects on lung tissue responsiveness have not been investigated previously. We hypothesized that chronic nitric oxide synthase (NOS) inhibition by N-omega-nitro-L-arginine methyl ester (L-NAME) may modulate lung tissue mechanics and eosinophil and extracellular matrix remodeling in guinea pigs with chronic pulmonary inflammation. Animals were submitted to seven saline or ovalbumin exposures with increasing doses (1 similar to 5 mg/ml for 4 wk) and treated or not with L-NAME in drinking water. After the seventh inhalation (72 h), animals were anesthetized and exsanguinated, and oscillatory mechanics of lung tissue strips were performed in baseline condition and after ovalbumin challenge (0.1%). Using morphometry, we assessed the density of eosinophils, neuronal NOS (nNOS)- and inducible NOS (iNOS)-positive distal lung cells, smooth muscle cells, as well as collagen and elastic fibers in lung tissue. Ovalbumin-exposed animals had an increase in baseline and maximal tissue resistance and elastance, eosinophil density, nNOS- and iNOS-positive cells, the amount of collagen and elastic fibers, and isoprostane-8-PGF(2 alpha) expression in the alveolar septa compared with controls (P < 0.05). L-NAME treatment in ovalbumin-exposed animals attenuated lung tissue mechanical responses (P < 0.01), nNOS- and iNOS-positive cells, elastic fiber content (P < 0.001), and isoprostane-8-PGF(2 alpha) in the alveolar septa (P < 0.001). However, this treatment did not affect the total number of eosinophils and collagen deposition. These data suggest that NO contributes to distal lung parenchyma constriction and to elastic fiber deposition in this model. One possibility may be related to the effects of NO activating the oxidative stress pathway.
Resumo:
Background: Up to 60% of chronic obstructive pulmonary disease ( COPD) patients can present airway hyperresponsiveness. However, it is not known whether the peripheral lung tissue also shows an exaggerated response to agonists in COPD. Objectives: To investigate the in vitro mechanical behavior and the structural and inflammatory changes of peripheral lung tissue in COPD patients and compare to nonsmoking controls. Methods: We measured resistance and elastance at baseline and after acetylcholine (ACh) challenge of lung strips obtained from 10 COPD patients and 10 control subjects. We also assessed the alveolar tissue density of neutrophils, eosinophils, macrophages, mast cells and CD8+ and CD4+ cells, as well as the content of alpha-smooth muscle actin-positive cells and elastic and collagen fibers. We further investigated whether changes in in vitro parenchymal mechanics correlated to structural and inflammatory parameters and to in vivo pulmonary function. Results: Values of resistance after ACh treatment and the percent increase in tissue resistance (%R) were higher in the COPD group (p <= 0.03). There was a higher density of macrophages and CD8+ cells (p < 0.05) and a lower elastic content (p = 0.003) in the COPD group. We observed a positive correlation between %R and eosinophil and CD8+ cell density (r = 0.608, p = 0.002, and r = 0.581, p = 0.001, respectively) and a negative correlation between %R and the ratio of forced expiratory volume in 1 s to forced vital capacity (r = -0.451, p < 0.05). Conclusions: The cholinergic responsiveness of parenchymal lung strips is increased in COPD patients and seems to be related to alveolar tissue eosinophilic and CD8 lymphocytic inflammation and to the degree of airway obstruction on the pulmonary function test. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
We investigated the effects of oral tolerance (OT) in controlling inflammatory response, hyperresponsiveness and airway remodeling in guinea pigs (GP) with chronic allergic inflammation. Animals received seven inhalations of ovalbumin (1-5 mg/mL-OVA group) or normal saline (NS group). OT was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st ovalbumin inhalation (OT1 group) or after the 4th (OT2 group). The induction of OT in sensitized animals decreased the elastance of respiratory system (Ers) response after both antigen and methacholine challenges, peribronchial edema formation, eosinophilic airway infiltration, eosinophilopoiesis, and airways collagen and elastic fiber content compared to OVA group (P < 0.05). The number of mononuclear cells and resistance of respiratory system (Rrs) responses after antigen and methacholine challenges were decreased only in OT2 group compared to OVA group (P < 0.05). Concluding, our results show that inducing OT attenuates airway remodeling as well as eosinophilic inflammation and respiratory system mechanics. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We have used a pharmacological approach to study the mechanisms underlying the rat lung injury and the airway reactivity changes induced by inhalation of formaldehyde (FA) (1% formalin solution, 90 min once a day, 4 days). The reactivity of isolated tracheae and intrapulmonary bronchi were assessed in dose-response curves to methacholine (MCh). Local and systemic inflammatory phenomena were evaluated in terms of leukocyte countings in bronchoalveolar lavage (BAL) fluid, blood, bone marrow lavage and spleen. Whereas the tracheal reactivity to MCh did not change, a significant bronchial hyporesponsiveness (BHR) was found after FA inhalation as compared with naive rats. Also, FA exposure significantly increased the total cell numbers in BAL, in peripheral blood and in the spleen, but did not modify the counts in bone marrow. Capsaicin hindered the increase of leukocyte number recovered in BAL fluid after FA exposure. Both compound 48/80 and indomethacin were able to prevent the lung neutrophil influx after FA, but indomethacin had no effect on that of mononuclear cells. Following FA inhalation, the treatment with sodium cromoglycate (SCG), but not with the nitric oxide (NO) synthase inhibitor L-NAME, significantly reduced the total cell number in BAL. Compound 48/80, L-NAME and SCG significantly prevented BHR to MCh after FA inhalation, whereas capsaicin was inactive in this regard. on the other hand, indomethacin exacerbated BHR. These data suggest that after FA inhalation, the resulting lung leukocyte influx and BHR may involve nitric oxide, airway sensory fibers and mast cell-derived mediators. The effect of NO seemed to be largely restricted to the bronchial tonus, whereas neuropeptides appeared to be linked to the inflammatory response, therefore indicating that the mechanisms responsible for the changes of airway responsiveness caused by FA may be separate from those underlying its inflammatory lung effects. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Several experimental studies of pulmonary emphysema using animal models have been described in the literature. However, only a few of these studies have focused on the assessment of ergometric function as a non-invasive technique to validate the methodology used for induction of experimental emphysema. Additionally, functional assessments of emphysema are rarely correlated with morphological pulmonary abnormalities caused by induced emphysema. The present study aimed to evaluate the effects of elastase administered by tracheal puncture on pulmonary parenchyma and their corresponding functional impairment. This was evaluated by measuring exercise capacity in C57Bl/6 mice in order to establish a reproducible and safe methodology of inducing experimental emphysema. Thirty six mice underwent ergometric tests before and 28 days after elastase administration. Pancreatic porcine elastase solution was administered by tracheal puncture, which resulted in a significantly decreased exercise capacity, shown by a shorter distance run (-30.5%) and a lower mean velocity (-15%), as well as in failure to increase the elimination of carbon dioxide. The mean linear intercept increased significantly by 50% in tracheal elastase administration. In conclusion, application of elastase by tracheal function in C57Bl/6 induces emphysema, as validated by morphometric analyses, and resulted in a significantly lower exercise capacity, while resulting in a low mortality rate. (C) 2011 Sociedade Portuguesa de Pneumologia. Published by Elsevier Espana, S.L. All rights reserved.
Resumo:
Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.
Resumo:
Pulse-pressure variation (PPV) due to increased right ventricular afterload and dysfunction may misleadingly suggest volume responsiveness. We aimed to assess prediction of volume responsiveness with PPV in patients with increased pulmonary artery pressure.