951 resultados para proton shuttle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism and the energy profile of the gas-phase reaction that mimics esterification under acidic conditions have been investigated at different levels of theory. These reactions are known to proceed with rate constants close to the collision limit in the gas-phase and questions have been raised as to whether the typical addition-elimination mechanism via a tetrahedral intermediate can explain the ease of these processes. Because these reactions are common to many organic and biochemical processes it is important to understand the intrinsic reactivity of these systems. Our calculations at different levels of theory reveal that a stepwise mechanism via a tetrahedral species is characterized by energy barriers that are inconsistent with the experimental results. For the thermoneutral exchange between protonated acetic acid and water and the exothermic reaction of protonated acetic acid and methanol our calculations show that these reactions proceed initially by a proton shuttle between the carbonyl oxygen and the hydroxy oxygen of acetic acid mediated by water, or methanol, followed by displacement at the acylium ion center. These findings suggest that the reactions in the gas-phase should be viewed as an acylium ion transfer reaction. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1596-1606, 2011

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The three-dimensional structure of murine mitochondrial carbonic anhydrase V has been determined and refined at 2.45-A resolution (crystallographic R factor = 0.187). Significant structural differences unique to the active site of carbonic anhydrase V are responsible for differences in the mechanism of catalytic proton transfer as compared with other carbonic anhydrase isozymes. In the prototypical isozyme, carbonic anhydrase II, catalytic proton transfer occurs via the shuttle group His-64; carbonic anhydrase V has Tyr-64, which is not an efficient proton shuttle due in part to the bulky adjacent side chain of Phe-65. Based on analysis of the structure of carbonic anhydrase V, we speculate that Tyr-131 may participate in proton transfer due to its proximity to zinc-bound solvent, its solvent accessibility, and its electrostatic environment in the protein structure. Finally, the design of isozyme-specific inhibitors is discussed in view of the complex between carbonic anhydrase V and acetazolamide, a transition-state analogue. Such inhibitors may be physiologically important in the regulation of blood glucose levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tetra-alkoxysilanes are common and useful reagents in sol-gel processes and understanding their reactivity is important in the design of new materials. The mechanism of gas-phase reactions that mimic alcoholyis of Si(OMe)(4) (usually known as TMOS) under acidic conditions have been studied by Fourier transform ion cyclotron resonance techniques and density functional calculations at the B3LYP/6-311+G(d,p) level. The proton affinity of TMOS has been estimated at 836.4 kJ mol(-1) and protonation of TMOS gives rise to an ionic species that is best represented as trimethoxysilyl cations associated with a methanol molecule. Protonated TMOS undergoes rapid and sequential substitution of the methoxy groups in the gas-phase upon reaction with alcohols. The calculated energy profile of the reaction indicates that the substitution reaction through an S(N)2 type mechanism may be more favorable than frontal attack at silicon. Furthermore, the sequential substitution reactions are promoted by a mechanism that involves proton shuttle from the most favorable protonation site to the oxygen of the departing group mediated by the neutral reagent molecule.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytochrome P450cin catalyzes the monooxygenation of 1,8-cineole, which is structurally very similar to D-camphor, the substrate for the most thoroughly investigated cytochrome P450, cytochrome P450cam. Both 1,8-cineole and D-camphor are C-10 monoterpenes containing a single oxygen atom with very similar molecular volumes. The cytochrome P450cin-substrate complex crystal structure has been solved to 1.7 Angstrom resolution and compared with that of cytochrome P450cam. Despite the similarity in substrates, the active site of cytochrome P450cin is substantially different from that of cytochrome P450cam in that the B' helix, essential for substrate binding in many cytochrome P450s including cytochrome P450cam, is replaced by an ordered loop that results in substantial changes in active site topography. In addition, cytochrome P450cin does not have the conserved threonine, Thr252 in cytochrome P450cam, which is generally considered as an integral part of the proton shuttle machinery required for oxygen activation. Instead, the analogous residue in cytochrome P450cin is Asn242, which provides the only direct protein H-bonding interaction with the substrate. Cytochrome P450cin uses a flavodoxin-like redox partner to reduce the heme iron rather than the more traditional ferredoxin-like Fe2S2 redox partner used by cytochrome P450cam and many other bacterial P450s. It thus might be expected that the redox partner docking site of cytochrome P450cin would resemble that of cytochrome P450BM3, which also uses a flavodoxin-like redox partner. Nevertheless, the putative docking site topography more closely resembles cytochrome P450cam than cytochrome P450BM3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the anhydrous 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the monocyclic heteroaromatic Lewis bases 2-aminopyrimidine, 3-(aminocarboxy) pyridine (nicotinamide) and 4-(aminocarbonyl) pyridine (isonicotinamide), namely 2-aminopyrimidinium 2-carboxy-4,5-dichlorobenzoate C4H6N3+ C8H3Cl2O4- (I), 3-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate C6H7N2O+ C8H3Cl2O4- (II) and the unusual salt adduct 4-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate 2-carboxymethyl-4,5-dichlorobenzoic acid (1/1/1) C6H7N2O+ C8H3Cl2O4-.C9H6Cl2O4 (III) have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen-bonded cyclic bis(cation--anion) units having both R2/2(8) and R2/1(4) N-H...O interactions. In compound (II) the primary N-H...O linked cation--anion units are extended into a two-dimensional sheet structure via amide-carboxyl and amide-carbonyl N-H...O interactions. The structure of (III) reveals the presence of an unusual and unexpected self-synthesized methyl monoester of the acid as an adduct molecule giving one-dimensional hydrogen-bonded chains. In all three structures the hydrogen phthalate anions are

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the hydrated proton-transfer compound of the drug quinacrine [rac-N'-(6-chloro-2-methoxyacridin-9-yl)-N,N-diethylpentane-1,4-diamine] with 4,5-dichlorophthalic acid, C23H32ClN3O2+ . 2(C8H3Cl2O4-).4H2O (I), has been determined at 200 K. The four labile water molecules of solvation form discrete ...O--H...O--H... hydrogen-bonded chains parallel to the quinacrine side chain, the two N--H groups of which act as hydrogen-bond donors for two of the water acceptor molecules. The other water molecules, as well as the acridinium H atom, also form hydrogen bonds with the two anion species and extend the structure into two-dimensional sheets. Between these sheets there are also weak cation--anion and anion--anion pi-pi aromatic ring interactions. This structure represents only the third example of a simple quinacrine derivative for which structural data are available but differs from the other two in that it is unstable in the X-ray beam due to efflorescence, probably associated with the destruction of the unusual four-membered water chain structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1:1 proton-transfer compounds of L-tartaric acid with 3-aminopyridine [3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-HO hydrogen-bonding interaction, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-HO association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-HO hydrogen bonds [OO = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of the 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid with the aliphatic Lewis bases diisopropylamine and hexamethylenetetramine, viz. diisopropylaminium 2-carboxy-4,5-dichlorobenzoate (1) and hexamethylenetetraminium 2-carboxy-4,5-dichlorobenzoate hemihydrate (2), have been determined. Crystals of both 1 and 2 are triclinic, space group P-1, with Z = 2 in cells with a = 7.0299(5), b = 9.4712(7), c = 12.790(1)Å, α = 99.476(6), β = 100.843(6), γ = 97.578(6)o (1) and a = 7.5624(8), b = 9.8918(8), c = 11.5881(16)Å, α = 65.660(6), β = 86.583(4), γ = 86.987(8)o (2). In each, one-dimensional hydrogen-bonded chain structures are found: in 1 formed through aminium N+-H...Ocarboxyl cation-anion interactions. In 2, the chains are formed through anion carboxyl O...H-Obridging water interactions with the cations peripherally bound. In both structures, the hydrogen phthalate anions are essentially planar with short intra-species carboxylic acid O-H...Ocarboxyl hydrogen bonds [O…O, 2.381(3) Å (1) and 2.381(8) Å (2)].