164 resultados para proteoglycan


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper assesses the capacity of high-frequency ultrasonic waves for detecting changes in the proteoglycan (PG) content of articular cartilage. 50 cartilage-on-bone samples were exposed to ultrasonic waves via an ultrasound transducer at a frequency of 20MHz. Histology and ImageJ processing were conducted to determine the PG content of the specimen. The ratios of the reflected signals from both the surface and the osteochondral junction (OCJ) were determined from the experimental data. The initial results show an inconsistency in the capacity of ultrasound to distinguish samples with severe proteoglycan loss (i.e. >90% PG loss) from the normal intact sample. This lack of clear distinction was also demonstrated at for samples with less than 60% depletion, while there is a clear differentiation between the normal intact sample and those with 55-70% PG loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To quantify the levels of proteoglycan 4 (PRG4) expression by subpopulations of chondrocytes from superficial, middle, and deep layers of normal bovine calf cartilage in various culture systems. Methods: Bovine calf articular cartilage discs or isolated cells were used in I of 3 systems of chondrocyte culture: explant, monolayer, or transplant, for 1-9 days. PRG4 expression was quantified by enzyme-linked immunosorbent assay of spent medium and localized by immunohistochemistry at the articular surface and within chondrocytes in explants and cultured cells. Results: Superficial chondrocytes secreted much more PRG4 than did middle and deep chondrocytes in all cultures. The pattern of PRG4 secretion into superficial culture medium varied with the duration of culture, decreasing with time in explant culture (from similar to25 mug/cm(2)/day on days 0-1 to similar to3 mug/cm(2)/day on days 5-9), while increasing in monolayer culture (from similar to1 pg/cell/day on days 0-1 to similar to7 pg/cell/day on days 7-9) and tending to increase in transplant culture (reaching similar to2 mug/cm(2)/day by days 7-9). In all of the culture systems, inclusion of ascorbic acid stimulated PRG4 secretion, and the source of PRG4 was immunolocalized to superficial cells. Conclusion: The results described here indicate that the phenotype of PRG4 secretion by chondrocytes in culture is generally maintained, in that PRG4 is expressed to a much greater degree by chondrocytes from the superficial zone than by those from the middle and deep zones. The marked up-regulation of PRG4 synthesis by ascorbic acid may have implications for cartilage homeostasis and prevention of osteoarthritic disease. Transplanting specialized cells that secrete PRG4 to a surface may impart functional lubrication and be generally applicable to many tissues in the body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the effects of the articular cartilage surface, as well as synovial fluid (SF) and its components, specifically proteoglycan 4 (PRG4) and hyaluronic acid (HA), on integrative cartilage repair in vitro. Methods. Blocks of calf articular cartilage were harvested, some with the articular surface intact and others without. Some of the latter types of blocks were pretreated with trypsin, and then with bovine serum albumin, SF, PRG4, or HA. Immunolocalization of PRG4 on cartilage surfaces was performed after treatment. Pairs of similarly treated cartilage blocks were incubated in partial apposition for 2 weeks in medium supplemented with serum and 3 H-proline. Following culture, mechanical integration between apposed cartilage blocks was assessed by measuring adhesive strength, and protein biosynthesis and deposition were determined by incorporated 3 H-proline. Results. Samples with articular surfaces in apposition exhibited little integrative repair compared with samples with cut surfaces in apposition. PRG4 was immunolocalized at the articular cartilage surface, but not in deeper, cut surfaces (without treatment). Cartilage samples treated with trypsin and then with SF or PRG4 exhibited an inhibition of integrative repair and positive immunostaining for PRG4 at treated surfaces compared with normal cut cartilage samples, while samples treated with HA exhibited neither inhibited integrative repair nor PRG4 at the tissue surfaces. Deposition of newly synthesized protein was relatively similar under conditions in which integration differed significantly. Conclusion. These results support the concept that PRG4 in SF, which normally contributes to cartilage lubrication, can inhibit integrative cartilage repair. This has the desirable effect of preventing fusion of apposing surfaces of articulating cartilage, but has the undesirable effect of inhibiting integrative repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage provides a low-friction surface for joint articulation, with boundary lubrication facilitated by proteoglycan 4 (PRG4), which is secreted by chondrocytes of the superficial zone. Chondrocytes from different zones are phenotypically distinct, and their phenotypes in vitro are influenced by the system in which they are cultured. We hypothesized that culturing cells from the superficial (S) zone in two-dimensional monolayer or three-dimensional alginate would affect their synthesis of PRG4, and that subsequently seeding them atop alginate-recovered cells from the middle/ deep (M) zone in various proportions would result in tissue-engineered constructs with varying levels of PRG4 secretion and matrix accumulation. During monolayer culture, S cells retained their PRG4-secreting phenotype, whereas in alginate culture the percentage of cells secreting PRG4 decreased with time. Constructs formed with increasing percentages of S cells decreased in thickness and matrix accumulation, depending on both the culture conditions before construct formation and the S-cell density. PRG4-secreting cells were localized to the S-cell seeded construct surface, with secretion rates of 0.1–4 pg/cell/day or 0.1–1 pg/cell/day for constructs formed with monolayer-recovered or alginate-recovered S cells, respectively. Tailoring secretion of PRG4 in cartilage constructs may be useful for enhancing low-friction properties at the articular surface, while maintaining other surfaces free of PRG4 for enhancing integration with surrounding tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are several methods for determining the proteoglycan content of cartilage in biomechanics experiments. Many of these include assay-based methods and the histochemistry or spectrophotometry protocol where quantification is biochemically determined. More recently a method based on extracting data to quantify proteoglycan content has emerged using the image processing algorithms, e.g., in ImageJ, to process histological micrographs, with advantages including time saving and low cost. However, it is unknown whether or not this image analysis method produces results that are comparable to those obtained from the biochemical methodology. This paper compares the results of a well-established chemical method to those obtained using image analysis to determine the proteoglycan content of visually normal (n=33) and their progressively degraded counterparts with the protocols. The results reveal a strong linear relationship with a regression coefficient (R2) = 0.9928, leading to the conclusion that the image analysis methodology is a viable alternative to the spectrophotometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heparan sulfate (HS) sugar chains attached to core proteoglycans (PGs) termed HSPGs mediate an extensive range of cell-extracellular matrix (ECM) and growth factor interactions based upon their sulfation patterns. When compared with non-osteogenic (maintenance media) culture conditions, under established osteogenic culture conditions, MC3T3-E1 cells characteristically increase their osteogenic gene expression profile and switch their dominant fibroblast growth factor receptor (FGFR) from FGFR1 (0.5-fold decrease) to FGFR3 (1.5-fold increase). The change in FGFR expression profile of the osteogenic-committed cultures was reflected by their inability to sustain an FGF-2 stimulus, but respond to BMP-2 at day 14 of culture. The osteogenic cultures decreased their chondroitin and dermatan sulfate PGs (biglycan, decorin, and versican), but increased levels of the HS core protein gene expression, in particular glypican-3. Commitment and progress through osteogenesis is accompanied by changes in FGFR expression, decreased GAG initiation but increased N- and O-sulfation and reduced remodeling of the ECM (decreased heparanase expression) resulting in the production of homogenous (21 kDa) HS chain. With the HSPG glypican-3 expression strongly upregulated in these processes, siRNA was used to knockdown this gene to examine the effect on osteogenic commitment. Reduced glypican-3 abrogated the expression of Runx2, and thus differentiation. The reintroduction of this HSPG into Runx2-null cells allowed osteogenesis to proceed. These results demonstrate the dependence of osteogenesis on specific HS chains, in particular those associated with glypican-3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heparan sulfate proteoglycans cooperate with basic fibroblast growth factor (bFGF/FGF2) signaling to control osteoblast growth and differentiation, as well as metabolic functions of osteoblasts. FGF2 signaling modulates the expression and activity of Runt-related transcription factor 2 (Runx2/Cbfa1), a key regulator of osteoblast proliferation and maturation. Here, we have characterized novel Runx2 target genes in osteoprogenitors under conditions that promote growth arrest while not yet permitting sustained phenotypic maturation. Runx2 enhances expression of genes related to proteoglycan-mediated signaling, including FGF receptors (e.g., FGFR2 and FGFR3) and proteoglycans (e.g., syndecans [Sdc1, Sdc2, Sdc3], glypicans [Gpc1], versican [Vcan]). Runx2 increases expression of the glycosyltransferase Exostosin-1 (Ext1) and heparanase, as well as alters the relative expression of N-linked sulfotransferases (Ndst1 = Ndst2 > Ndst3) and enzymes mediating O-linked sulfation of heparan sulfate (Hs2st > Hs6st) or chondroitin sulfate (Cs4st > Cs6st). Runx2 cooperates with FGF2 to induce expression of Sdc4 and the sulfatase Galns, but Runx2 and FGF2 suppress Gpc6, thus suggesting intricate Runx2 and FGF2 dependent changes in proteoglycan utilization. One functional consequence of Runx2 mediated modulations in proteoglycan-related gene expression is a change in the responsiveness of bone markers to FGF2 stimulation. Runx2 and FGF2 synergistically enhance osteopontin expression (>100 fold), while FGF2 blocks Runx2 induction of alkaline phosphatase. Our data suggest that Runx2 and the FGF/proteoglycan axis may form an extracellular matrix (ECM)-related regulatory feed-back loop that controls osteoblast proliferation and execution of the osteogenic program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnosis of articular cartilage pathology in the early disease stages using current clinical diagnostic imaging modalities is challenging, particularly because there is often no visible change in the tissue surface and matrix content, such as proteoglycans (PG). In this study, we propose the use of near infrared (NIR) spectroscopy to spatially map PG content in articular cartilage. The relationship between NIR spectra and reference data (PG content) obtained from histology of normal and artificially induced PG-depleted cartilage samples was investigated using principal component (PC) and partial least squares (PLS) regression analyses. Significant correlation was obtained between both data (R2 = 91.40%, p<0.0001). The resulting correlation was used to predict PG content from spectra acquired from whole joint sample, this was then employed to spatially map this component of cartilage across the intact sample. We conclude that NIR spectroscopy is a feasible tool for evaluating cartilage contents and mapping their distribution across mammalian joint

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The secreted metalloprotease ADAMTS5 is implicated in destruction of the cartilage proteoglycan aggrecan in arthritis, but its physiological functions are unknown. Its expression profile during embryogenesis and in adult tissues is therefore of considerable interest. β-Galactosidase (β-gal) histochemistry, enabled by a LacZ cassette inserted in the Adamts5 locus, and validated by in situ hybridization with an Adamts5 cRNA probe and ADAMTS5 immunohistochemistry, was used to profile Adamts5 expression during mouse embryogenesis and in adult mouse tissues. Embryonic expression was scarce prior to 11.5 days of gestation (E11.5) and noted only in the floor plate of the developing brain at E9.5. After E11.5 there was continued expression in brain, especially in the choroid plexus, peripheral nerves, dorsal root ganglia, cranial nerve ganglia, spinal and cranial nerves, and neural plexuses of the gut. In addition to nerves, developing limbs have Adamts5 expression in skeletal muscle (from E13.5), tendons (from E16.5), and inter-digital mesenchyme of the developing autopod (E13.5–15.5). In adult tissues, there is constitutive Adamts5 expression in arterial smooth muscle cells, mesothelium lining the peritoneal, pericardial and pleural cavities, smooth muscle cells in bronchi and pancreatic ducts, glomerular mesangial cells in the kidney, dorsal root ganglia, and in Schwann cells of the peripheral and autonomic nervous system. Expression of Adamts5 during neuromuscular development and in smooth muscle cells coincides with the broadly distributed proteoglycan versican, an ADAMTS5 substrate. These observations suggest the major contexts in which developmental and physiological roles could be sought for this protease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Amniotic membrane transplantation (AMT) has been used as a graft or as a dressing in ocular surface reconstruction, facilitating epithelization, maintaining normal epithelial phenotype, and reducing inflammation, vascularization, and scarring. The corneal transparency is due, at least in part, to the arrangement in orthogonal lamellae of collagen fibrils, surrounded by proteoglycans (PGs). These PGs regulate fibrilogenesis, the matrix assembly, and ultimately the corneal transparency. The purpose of the present study was to investigate the effects of AMT upon the corneal PGs after severe limbal injury.METHODS. Experiments were performed on the right corneas of 22 New Zealand female albino rabbits, and their left corneas were used as matched controls. These animals were divided into 3 groups: G1 (n = 10): total peritomy and keratolimbectomy, followed by application of 0.5 M NaOH; G2 (n = 10): submitted to the same trauma as G1, and treated by AMT; G3: no trauma, only AMT (n = 2). The right corneas of G2 and G3 were covered by DMSO 4 cryopreserved human amniotic membrane, fixed by interrupted 9-0 mononylon sutures, with its stromal face toward the ocular surface. After 7 or 30 days, the corneas were removed and PGs were extracted.RESULTS. Normal corneas contained approximately 9 mg of PGs per gram of dry tissue. AMT on intact cornea (G3) did not cause any changes in the concentration of PGs. In contrast, injured corneas contained much less PGs, both on the seventh and on the 30th day posttrauma. The PG concentration was even lower in injured corneas treated by AMT. This decrease was due almost exclusively to dermatan sulfate PGs, and the structure of dermatan sulfate was also modified, indicating changes in the biosynthesis patterns.CONCLUSIONS. Although beneficial effects have been observed on clinical observation and concentration of soluble proteins after AMT, the normal PG composition of cornea was not attained, even 30 days postinjury, indicating that the normal ocular surface reconstruction, if possible, is a long-term process. (Eur J Ophthalmol 2010; 20: 290-9)