999 resultados para proteinase K
Resumo:
Crude brain homogenates of terminally diseased hamsters infected with the 263 K strain of scrapie (PrP Sc) were heated and/or pressurized at 800 MPa at 60ºC for different times (a few seconds or 5, 30, 120 min) in phosphate-buffered saline (PBS) of different pH and concentration. Prion proteins were analyzed on immunoblots for their proteinase K (PK) resistance, and in hamster bioassays for their infectivity. Samples pressurized under initially neutral conditions and containing native PrP Sc were negative on immunoblots after PK treatment, and a 6-7 log reduction of infectious units per gram was found when the samples were pressurized in PBS of pH 7.4 for 2 h. A pressure-induced change in the protein conformation of native PrP Sc may lead to less PK resistant and less infectious prions. However, opposite results were obtained after pressurizing native infectious prions at slightly acidic pH and in PBS of higher concentration. In this case an extensive fraction of native PrP Sc remained PK resistant after pressure treatment, indicating a protective effect possibly due to induced aggregation of prion proteins in such buffers.
Resumo:
Considerable efforts have been directed toward the identification of small-ruminant prion diseases, i.e., classical and atypical scrapie as well as bovine spongiform encephalopathy (BSE). Here we report the in-depth molecular analysis of the proteinase K-resistant prion protein core fragment (PrP(res)) in a highly scrapie-affected goat flock in Greece. The PrP(res) profile by Western immunoblotting in most animals was that of classical scrapie in sheep. However, in a series of clinically healthy goats we identified a unique C- and N-terminally truncated PrP(res) fragment, which is akin but not identical to that observed for atypical scrapie. These findings reveal novel aspects of the nature and diversity of the molecular PrP(res) phenotypes in goats and suggest that these animals display a previously unrecognized prion protein disorder.
Resumo:
Objetivo: pesquisar a freqüência de mutação pontual no códon 12 do gene K-ras, em espécimes cirúrgicos de pacientes portadoras de carcinoma ductal invasivo de mama. Material e Métodos: foram utilizados cortes de 50 espécimes cirúrgicos incluídos em blocos de parafina, de pacientes portadoras de carcinoma ductal invasivo de mama, com graus histológicos II e III. Os cortes destinados ao estudo foram desparafinizados e submetidos a extração do DNA, por meio do emprego da proteinase K. Para a amplificação do fragmento a ser analisado, utilizou-se a reação em cadeia da polimerase, seguida por clivagem com o emprego de enzima de restrição de comprimento variável (RFLP). A verificação da presença de mutação nas amostras foi feita com o emprego de eletroforese em gel de agarose, com marcador de peso molecular "Ladder 123" (GIBCO-BRL), e a documentação dos resultados, mediante fotografia, utilizando-se luz ultravioleta transmitida. Resultados: em cinco dos 50 carcinomas ductais invasivos de mama estudados (10%) constatou-se a presença de mutação no códon 12 do gene K-ras, sendo todas elas polimórficas para esse caráter. As afetadas pelos tumores, que apresentavam a referida mutação, encontravam-se na pós-menopausa. Em quatro dos cinco casos em que se constatou a mutação, o grau histológico dos tumores era II e no caso restante III.
Resumo:
We describe the use of a plant cysteine proteinase isolated from latex of Carica candamarcensis as a protective agent during isolation of bacterial DNA following growth in culture of these cells. Between 100 to 720 units of proteinase (1 µg = 6 units) afforded good DNA protection when incubated with various kinds of microorganisms. Agarose gel electrophoresis showed that the resulting DNA was similar in size to DNA preparations obtained by treatment with proteinase K. The viability of the resulting material was checked by PCR amplification using species-specific primers. After standing at room temperature (25oC) for 35 days, the enzyme lost 10% of its initial activity. The enzyme stability and good yield of DNA suggest the use of this proteinase as an alternative to proteinase K.
Resumo:
The final step in the pathway that provides for glycosylphosphatidylinositol (GPI) anchoring of cell-surface proteins occurs in the lumen of the endoplasmic reticulum and consists of a transamidation reaction in which fully assembled GPI anchor donors are substituted for specific COOH-terminal signal peptide sequences contained in nascent polypeptides. In previous studies we described a human K562 cell mutant line, designated class K, which assembles all the known intermediates of the GPI pathway but fails to display GPI-anchored proteins on its surface membrane. In the present study, we used mRNA encoding miniPLAP, a truncated form of placental alkaline phosphatase (PLAP), in in vitro assays with rough microsomal membranes (RM) of mutant K cells to further characterize the biosynthetic defect in this line. We found that RM from mutant K cells supported NH2-terminal processing of the nascent translational product, preprominiPLAP, but failed to show any detectable COOH-terminal processing of the resulting prominiPLAP to GPI-anchored miniPLAP. Proteinase K protection assays verified that NH2-terminal processed prominiPLAP was appropriately translocated into the endoplasmic reticulum lumen. The addition of hydrazine or hydroxylamine, which can substitute for GPI donors, to RM from wild-type or mutant cells defective in various intermediate biosynthetic steps in the GPI pathway produced large amounts of the hydrazide or hydroxamate of miniPLAP. In contrast, the addition of these nucleophiles to RM of class K cells yielded neither of these products. These data, taken together, lead us to conclude that mutant K cells are defective in part of the GPI transamidase machinery.
Resumo:
Wild felids and canids are usually the main predators in the food chains where they dwell and are almost invisible to behavior and ecology researchers. Due to their grooming behavior, they tend to swallow shed hair, which shows up in the feces. DNA found in hair shafts can be used in molecular studies that can unravel, for instance, genetic variability, reproductive mode and family structure, and in some species, it is even possible to estimate migration and dispersion rates in given populations. First, however, DNA must be extracted from hair. We extracted successfully and dependably hair shaft DNA from eight wild Brazilian felids, ocelot, margay, oncilla, Geoffroy's cat, pampas cat, jaguarundi, puma, and jaguar, as well as the domestic cat and from three wild Brazilian canids, maned wolf, crab-eating fox, and hoary fox, as well as the domestic dog. Hair samples came mostly from feces collected at the Sao Paulo Zoo and were also gathered from non-sedated pet or from recently dead wild animals and were also collected from museum specimens. Fractions of hair samples were stained before DNA extraction, while most samples were not. Our extraction protocol is based on a feather DNA extraction technique, based in the phenol: chloroform: isoamyl alcohol general method, with proteinase K as digestive enzyme.
Resumo:
Chemical sensors and biosensors are widely used to detect various kinds of protein target biomolecules. Molecularly Imprinted Polymers (MIPs) have raised great interest in this area, because these act as antibody-like recognition materials, with high affinity to the template molecule. Compared to natural antibodies, these are also of lower cost and higher stability. There are different types of supports used to carry MIP materials, mostly of these made of gold, favourably assembled on a Screen Printed Electrode (SPE) strategy. For this work a new kind of support for the sensing layer was developed: conductive paper. This support was made by modifying first cellulose paper with paraffin wax (to make it waterproof), and casting a carbon-ink on it afterwards, to turn it conductive. The SPAM approach previously reported in1 was employed herein to assemble to MIP sensing material on the conductive paper. The selected charged monomers were (vinylbenzyl) trimethlammonium chloride (positive charge) or vinylbenzoic acid (negative charge), used to generate binding positions with single-type charge (positive or negative). The non-specific binding area of the MIP layer was assembled by chronoamperometry-assisted polymerization (at 1 V, for 60, 120 or 180 seconds) of vinylbenzoate, cross-linked with ethylene glycol vinyl ether. The BSA biomolecules lying within the polymeric matrix were removed by Proteinase K action. All preparation stages of the MIP assembly were followed by FTIR, Raman spectroscopy and, electrochemical analysis. In general, the best results were obtained for longer polymerization times and positively charged binding sites (which was consistent with a negatively-charged protein under physiological pH, as BSA). Linear responses against BSA concentration ranged from 0.005 to 100 mg/mL, in PBS buffer standard solutions. The sensor was further calibrated in standard solutions that were prepared in synthetic or real urine, and the analytical response became more sensitive and stable. Compared to the literature, the detection capability of the developed device is better than most of the reported electrodes. Overall, the simplicity, low cost and good analytical performance of the BSA SPE device, prepared with positively charged binding positions, seems a suitable approach for practical application in clinical context. Further studies with real samples are required, as well as gathering with electronic-supporting devices to allow on-site readings.
Resumo:
This work describes a novel use for the polymeric film, poly(o-aminophenol) (PAP) that was made responsive to a specific protein. This was achieved through templated electropolymerization of aminophenol (AP) in the presence of protein. The procedure involved adsorbing protein on the electrode surface and thereafter electroploymerizing the aminophenol. Proteins embedded at the outer surface of the polymeric film were digested by proteinase K and then washed away thereby creating vacant sites. The capacity of the template film to specifically rebind protein was tested with myoglobin (Myo), a cardiac biomarker for ischemia. The films acted as biomimetic artificial antibodies and were produced on a gold (Au) screen printed electrode (SPE), as a step towards disposable sensors to enable point-of-care applications. Raman spectroscopy was used to follow the surface modification of the Au-SPE. The ability of the material to rebind Myo was measured by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The devices displayed linear responses to Myo in EIS and SWV assays down to 4.0 and 3.5 μg/mL, respectively, with detection limits of 1.5 and 0.8 μg/mL. Good selectivity was observed in the presence of troponin T (TnT) and creatine kinase (CKMB) in SWV assays, and accurate results were obtained in applications to spiked serum. The sensor described in this work is a potential tool for screening Myo in point-of-care due to the simplicity of fabrication, disposability, short time response, low cost, good sensitivity and selectivity.
Resumo:
This work presents the development of a low cost sensor device for the diagnosis of breast cancer in point-of-care, made with new synthetic biomimetic materials inside plasticized poly(vinyl chloride), PVC, membranes, for subsequent potentiometric detection. This concept was applied to target a conventional biomarker in breast cancer: Breast Cancer Antigen (CA15-3). The new biomimetic material was obtained by molecularly-imprinted technology. In this, a plastic antibody was obtained by polymerizing around the biomarker that acted as an obstacle to the growth of the polymeric matrix. The imprinted polymer was specifically synthetized by electropolymerization on an FTO conductive glass, by using cyclic voltammetry, including 40 cycles within -0.2 and 1.0 V. The reaction used for the polymerization included monomer (pyrrol, 5.0×10-3 mol/L) and protein (CA15-3, 100U/mL), all prepared in phosphate buffer saline (PBS), with a pH of 7.2 and 1% of ethylene glycol. The biomarker was removed from the imprinted sites by proteolytic action of proteinase K. The biomimetic material was employed in the construction of potentiometric sensors and tested with regard to its affinity and selectivity for binding CA15-3, by checking the analytical performance of the obtained electrodes. For this purpose, the biomimetic material was dispersed in plasticized PVC membranes, including or not a lipophilic ionic additive, and applied on a solid conductive support of graphite. The analytical behaviour was evaluated in buffer and in synthetic serum, with regard to linear range, limit of detection, repeatability, and reproducibility. This antibody-like material was tested in synthetic serum, and good results were obtained. The best devices were able to detect 5 times less CA15-3 than that required in clinical use. Selectivity assays were also performed, showing that the various serum components did not interfere with this biomarker. Overall, the potentiometric-based methods showed several advantages compared to other methods reported in the literature. The analytical process was simple, providing fast responses for a reduced amount of analyte, with low cost and feasible miniaturization. It also allowed the detection of a wide range of concentrations, diminishing the required efforts in previous sample pre-treating stages.
Resumo:
O Cancro da mama é uma doença cuja incidência tem vindo a aumentar de ano para ano e além disso é responsável por um grande número de mortes em todo mundo. De modo a combater esta doença têm sido propostos e utilizados biomarcadores tumorais que permitem o diagnóstico precoce, o acompanhamento do tratamento e/ou a orientação do tipo tratamento a adotar. Atualmente, os biomarcadores circulantes no sangue periférico recomendados pela Associação Americana de Oncologia Clinica (ASCO) para monitorizar os pacientes durante o tratamento são o cancer antigen 15-3 (CA 15-3), o cancer antigen 27.29 (CA 27.29) e o cancer embryobic antigen (CEA). Neste trabalho foi desenvolvido um sensor eletroquímico (voltamétrico) para monitorizar o cancro da mama através da análise do biomarcador CA 15-3. Inicialmente realizou-se o estudo da adsorção da proteína na superfície do elétrodo para compreender o comportamento do sensor para diferentes concentrações. De seguida, estudaram-se três polímeros (poliaminofenol, polifenol e polifenilenodiamina) e selecionou-se o poliaminofenol como o polímero a utilizar, pois possuía a melhor percentagem de alteração de sinal. Após a seleção do polímero, este foi depositado na superfície do elétrodo por eletropolimerização, formando um filme polimérico molecularmente impresso (MIP) à volta da proteína (molde). Posteriormente, foram analisados cinco solventes (água, mistura de dodecil sulfato de sódio e ácido acético, ácido oxálico, guanidina e proteinase K) e o ácido oxálico revelou ser mais eficaz na extração da proteína. Por último, procedeu-se à caraterização do sensor e analisou-se a resposta analítica para diferentes concentrações de CA 15-3 revelando diferenças claras entre o NIP (polímero não impresso) e o MIP.
Resumo:
Three DNA extraction methods were evaluated in this study: proteinase K followed by phenol-chloroform; a plant proteinase (E6870) followed by phenol-chloroform; and boiling of leptospires in 0.1 mM Tris, pH 7.0 for 10 min at 100°C, with no phenol treatment. Every strain treated with proteinase K or E6870 afforded positive polymerase chain reaction (PCR) reaction. On the other hand, from five strains extracted by the boiling method, three did not feature the 849 bp band characteristic in Leptospira. We also evaluated by RAPD-PCR, DNAs from serovars isolated with proteinase K and proteinase 6870 with primers B11/B12. Each of the DNA samples provided PCR profiles in agreement with previous data. Moreover, the results with E6870 showed less background non-specific amplification, suggesting that removal of nucleases was more efficient with E6870. The limit for detection by PCR using Lep13/Lep14 was determined to be 10(2) leptospira, using the silver stain procedure.
Resumo:
AbstractText BACKGROUND: Profiling sperm DNA present on vaginal swabs taken from rape victims often contributes to identifying and incarcerating rapists. Large amounts of the victim's epithelial cells contaminate the sperm present on swabs, however, and complicate this process. The standard method for obtaining relatively pure sperm DNA from a vaginal swab is to digest the epithelial cells with Proteinase K in order to solubilize the victim's DNA, and to then physically separate the soluble DNA from the intact sperm by pelleting the sperm, removing the victim's fraction, and repeatedly washing the sperm pellet. An alternative approach that does not require washing steps is to digest with Proteinase K, pellet the sperm, remove the victim's fraction, and then digest the residual victim's DNA with a nuclease. METHODS: The nuclease approach has been commercialized in a product, the Erase Sperm Isolation Kit (PTC Labs, Columbia, MO, USA), and five crime laboratories have tested it on semen-spiked female buccal swabs in a direct comparison with their standard methods. Comparisons have also been performed on timed post-coital vaginal swabs and evidence collected from sexual assault cases. RESULTS: For the semen-spiked buccal swabs, Erase outperformed the standard methods in all five laboratories and in most cases was able to provide a clean male profile from buccal swabs spiked with only 1,500 sperm. The vaginal swabs taken after consensual sex and the evidence collected from rape victims showed a similar pattern of Erase providing superior profiles. CONCLUSIONS: In all samples tested, STR profiles of the male DNA fractions obtained with Erase were as good as or better than those obtained using the standard methods.
Resumo:
In most pathology laboratories worldwide, formalin-fixed paraffin embedded (FFPE) samples are the only tissue specimens available for routine diagnostics. Although commercial kits for diagnostic molecular pathology testing are becoming available, most of the current diagnostic tests are laboratory-based assays. Thus, there is a need for standardized procedures in molecular pathology, starting from the extraction of nucleic acids. To evaluate the current methods for extracting nucleic acids from FFPE tissues, 13 European laboratories, participating to the European FP6 program IMPACTS (www.impactsnetwork.eu), isolated nucleic acids from four diagnostic FFPE tissues using their routine methods, followed by quality assessment. The DNA-extraction protocols ranged from homemade protocols to commercial kits. Except for one homemade protocol, the majority gave comparable results in terms of the quality of the extracted DNA measured by the ability to amplify differently sized control gene fragments by PCR. For array-applications or tests that require an accurately determined DNA-input, we recommend using silica based adsorption columns for DNA recovery. For RNA extractions, the best results were obtained using chromatography column based commercial kits, which resulted in the highest quantity and best assayable RNA. Quality testing using RT-PCR gave successful amplification of 200 bp-250 bp PCR products from most tested tissues. Modifications of the proteinase-K digestion time led to better results, even when commercial kits were applied. The results of the study emphasize the need for quality control of the nucleic acid extracts with standardised methods to prevent false negative results and to allow data comparison among different diagnostic laboratories.
Resumo:
The major envelope antigen of vaccinia virus is an acylated protein of M(r) 37,000 (p37K) which is required for the formation of extracellular enveloped virions (EEV). Despite its important role in the wrapping process, p37K has not been studied in much detail. In order to better characterize this protein we have undertaken a detailed biochemical analysis. Sodium carbonate treatment showed that p37K is tightly bound to the viral envelope. Its resistance to proteinase K digestion indicates that it is not exposed on the surface of EEV but lines the inner side of the envelope. Since p37K does not contain a signal peptide characteristic of most membrane proteins, we examined the possibility that the protein acquires its membrane affinity through the addition of fatty acids. Indeed, Triton X-114 phase partitioning experiments demonstrated that p37K is hydrophobic when acylated, but hydrophilic in the absence of fatty acids. Three other viral proteins have been shown to be required for virus envelopment and release from the host cell and we therefore tested whether p37K interacts with viral proteins. In EEV and in absence of reducing agents, an 80-kDa complex reacting with an anti-37K antiserum was found. Analysis of this complex showed that it most likely consists of a p37K homodimer. Interestingly, only a small amount of p37K occurs as a complex, most of it is present in the viral envelope as monomers.
Resumo:
Introduction: The coexistence of different molecular types of classical protease-resistant prion protein in the same individual have been described, however, the simultaneous finding of these with the recently described protease-sensitive variant or variably protease-sensitive prionopathy has, to the best of our knowledge, not yet been reported. Case presentation: A 74-year-old Caucasian woman showed a sporadic Creutzfeldt-Jakob disease clinical phenotype with reactive depression, followed by cognitive impairment, akinetic-rigid Parkinsonism with pseudobulbar syndrome and gait impairment with motor apraxia, visuospatial disorientation, and evident frontal dysfunction features such as grasping, palmomental reflex and brisk perioral reflexes. She died at age 77. Neuropathological findings showed: spongiform change in the patient"s cerebral cortex, striatum, thalamus and molecular layer of the cerebellum with proteinase K-sensitive synaptic-like, dot-like or target-like prion protein deposition in the cortex, thalamus and striatum; proteinase K-resistant prion protein in the same regions; and elongated plaque-like proteinase K-resistant prion protein in the molecular layer of the cerebellum. Molecular analysis of prion protein after proteinase K digestion revealed decreased signal intensity in immunoblot, a ladder-like protein pattern, and a 71% reduction of PrPSc signal relative to non-digested material. Her cerebellum showed a 2A prion protein type largely resistant to proteinase K. Genotype of polymorphism at codon 129 was valine homozygous. Conclusion: Molecular typing of prion protein along with clinical and neuropathological data revealed, to the best of our knowledge, the first case of the coexistence of different protease-sensitive prion proteins in the same patient in a rare case that did not fulfill the current clinical diagnostic criteria for either probable or possible sporadic Creutzfeldt-Jakob disease. This highlights the importance of molecular analyses of several brain regions in order to correctly diagnose rare and atypical prionopathies