1000 resultados para protein unfolding


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods for macromolecular structure determination (NMR and crystallography) are now being used to get structural information on partially folded and unfolded states of proteins. These techniques, in combination with proton hydrogen exchange studies are powerful tools to extract information on non-native states of proteins. This review discusses progress In this area of protein folding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We carry out a series of long atomistic molecular dynamics simulations to study the unfolding of a small protein, chicken villin headpiece (HP-36), in water-ethanol (EtOH) binary mixture. The prime objective of this work is to explore the sensitivity of protein unfolding dynamics toward increasing concentration of the cosolvent and unravel essential features of intermediates formed in search of a dynamical pathway toward unfolding. In water ethanol binary mixtures, HP-36 is found to unfold partially, under ambient conditions, that otherwise requires temperature as high as similar to 600 K to denature in pure aqueous solvent. However, an interesting course of pathway is observed to be followed in the process, guided by the formation of unique intermediates. The first step of unfolding is essentially the separation of the cluster formed by three hydrophobic (phenylalanine) residues, namely, Phe-7, Phe-11, and Phe-18, which constitute the hydrophobic core, thereby initiating melting of helix-2 of the protein. The initial steps are similar to temperature-induced unfolding as well as chemical unfolding using DMSO as cosolvent. Subsequent unfolding steps follow a unique path. As water-ethanol shows composition-dependent anomalies, so do the details of unfolding dynamics. With an increase in cosolvent concentration, different partially unfolded intermediates are found to be formed. This is reflected in a remarkable nonmonotonic composition dependence of several order parameters, including fraction of native contacts and protein-solvent interaction energy. The emergence of such partially unfolded states can be attributed to the preferential solvation of the hydrophobic residues by the ethyl groups of ethanol. We further quantify the local dynamics of unfolding by using a Marcus-type theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elucidation of possible pathways between folded (native) and unfolded states of a protein is a challenging task, as the intermediates are often hard to detect. Here, we alter the solvent environment in a controlled manner by choosing two different cosolvents of water, urea, and dimethyl sulfoxide (DMSO) and study unfolding of four different proteins to understand the respective sequence of melting by computer simulation methods. We indeed find interesting differences in the sequence of melting of alpha helices and beta sheets in these two solvents. For example, in 8 M urea solution, beta-sheet parts of a protein are found to unfold preferentially, followed by the unfolding of alpha helices. In contrast, 8 M DMSO solution unfolds alpha helices first, followed by the separation of beta sheets for the majority of proteins. Sequence of unfolding events in four different alpha/beta proteins and also in chicken villin head piece (HP-36) both in urea and DMSO solutions demonstrate that the unfolding pathways are determined jointly by relative exposure of polar and nonpolar residues of a protein and the mode of molecular action of a solvent on that protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The prediction of protein structure and the precise understanding of protein folding and unfolding processes remains one of the greatest challenges in structural biology and bioinformatics. Computer simulations based on molecular dynamics (MD) are at the forefront of the effort to gain a deeper understanding of these complex processes. Currently, these MD simulations are usually on the order of tens of nanoseconds, generate a large amount of conformational data and are computationally expensive. More and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. METHODS: To adequately organize, manage, and analyze the data generated by unfolding simulation studies, we designed a data warehouse system that is embedded in a grid environment to facilitate the seamless sharing of available computer resources and thus enable many groups to share complex molecular dynamics simulations on a more regular basis. RESULTS: To gain insight into the conformational fluctuations and stability of the monomeric forms of the amyloidogenic protein transthyretin (TTR), molecular dynamics unfolding simulations of the monomer of human TTR have been conducted. Trajectory data and meta-data of the wild-type (WT) protein and the highly amyloidogenic variant L55P-TTR represent the test case for the data warehouse. CONCLUSIONS: Web and grid services, especially pre-defined data mining services that can run on or 'near' the data repository of the data warehouse, are likely to play a pivotal role in the analysis of molecular dynamics unfolding data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing awareness of protein folding disorders, the explosion of genomic information, and the need for efficient ways to predict protein structure, protein folding and unfolding has become a central issue in molecular sciences research. Molecular dynamics computer simulations are increasingly employed to understand the folding and unfolding of proteins. Running protein unfolding simulations is computationally expensive and finding ways to enhance performance is a grid issue on its own. However, more and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. This paper describes efforts to provide a grid-enabled data warehouse for protein unfolding data. We outline the challenge and present first results in the design and implementation of the data warehouse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The quantification of protein-ligand interactions is essential for systems biology, drug discovery, and bioengineering. Ligand-induced changes in protein thermal stability provide a general, quantifiable signature of binding and may be monitored with dyes such as Sypro Orange (SO), which increase their fluorescence emission intensities upon interaction with the unfolded protein. This method is an experimentally straightforward, economical, and high-throughput approach for observing thermal melts using commonly available real-time polymerase chain reaction instrumentation. However, quantitative analysis requires careful consideration of the dye-mediated reporting mechanism and the underlying thermodynamic model. We determine affinity constants by analysis of ligand-mediated shifts in melting-temperature midpoint values. Ligand affinity is determined in a ligand titration series from shifts in free energies of stability at a common reference temperature. Thermodynamic parameters are obtained by fitting the inverse first derivative of the experimental signal reporting on thermal denaturation with equations that incorporate linear or nonlinear baseline models. We apply these methods to fit protein melts monitored with SO that exhibit prominent nonlinear post-transition baselines. SO can perturb the equilibria on which it is reporting. We analyze cases in which the ligand binds to both the native and denatured state or to the native state only and cases in which protein:ligand stoichiometry needs to treated explicitly.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The conformational stability of the homodimeric pea lectin was determined by both isothermal urea-induced and thermal denaturation in the absence and presence of urea. The denaturation profiles were analyzed to obtain the thermodynamic parameters associated with the unfolding of the protein. The data not only conform to the simple A(2) double left right arrow 2U model of unfolding but also are well described by the linear extrapolation model for the nature of denaturant-protein interactions. In addition, both the conformational stability (Delta G(s)) and the Delta C-p for the protein unfolding is quite high, at about 18.79 kcal/ mol and 5.32 kcal/(mol K), respectively, which may be a reflection of the relatively larger size of the dimeric molecule (M-r 49 000) and, perhaps, a consequent larger buried hydrophobic core in the folded protein. The simple two-state (A(2) double left right arrow 2U) nature of the unfolding process, with the absence of any monomeric intermediate, suggests that the quaternary interactions alone may contribute significantly to the conformational stability of the oligomer-a point that may be general to many oligomeric proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heating and cooling temperature jumps (T-jumps) were performed using a newly developed technique to trigger unfolding and refolding of wild-type ribonuclease A and a tryptophan-containing variant (Y115W). From the linear Arrhenius plots of the microscopic folding and unfolding rate constants, activation enthalpy (ΔH#), and activation entropy (ΔS#) were determined to characterize the kinetic transition states (TS) for the unfolding and refolding reactions. The single TS of the wild-type protein was split into three for the Y115W variant. Two of these transition states, TS1 and TS2, characterize a slow kinetic phase, and one, TS3, a fast phase. Heating T-jumps induced protein unfolding via TS2 and TS3; cooling T-jumps induced refolding via TS1 and TS3. The observed speed of the fast phase increased at lower temperature, due to a strongly negative ΔH# of the folding-rate constant. The results are consistent with a path-dependent protein folding/unfolding mechanism. TS1 and TS2 are likely to reflect X-Pro114 isomerization in the folded and unfolded protein, respectively, and TS3 the local conformational change of the β-hairpin comprising Trp115. A very fast protein folding/unfolding phase appears to precede both processes. The path dependence of the observed kinetics is suggestive of a rugged energy protein folding funne

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Porcine S100A12 is a member of the S100 proteins, family of small acidic calcium-binding proteins characterized by the presence of two EF-hand motifs. These proteins are involved in many cellular events such as the regulation of protein phosphorylation, enzymatic activity, protein-protein interaction, Ca(2+) homeostasis, inflammatory processes and intermediate filament polymerization. In addition, members of this family bind Zn(2+) or Ca(2+) with cooperative effect on binding. In this study, the gene sequence encoding porcine S100A12 was obtained by the synthetic gene approach using E. coli codon bias. Additionally, we report a thermodynamic study of the recombinant S100A12 using circular dichroism, fluorescence and isothermal titration calorimetry. The results of urea and temperature induced unfolding and refolding processes indicated a reversible two-state process. Also, the ANS fluorescence studies showed that in presence of divalent ions the protein exposes hydrophobic sites which could facilitate the interaction with other proteins and trigger the physiological responses. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The urea effect on the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) stability was studied by analytical ultracentrifugation (AUC) and small angle X-ray scattering (SAXS). AUC data show that the sedimentation coefficient distributions curves c (S), at 1.0mol/L of urea, display a single peak at 57 S, associated to the undissociated protein. The increase in urea concentration, up to 4.0mol/L, induces the appearance of smaller species, due to oligomeric dissociation. The sedimentation coefficients and molecular masses are 9.2S and 204kDa for the dodecamer (abcd)3, 5.5S and 69kDa for the tetramer (abcd), 4.1S and 52kDa for the trimer (abc) and 2.0 S and 17kDa for the monomer d, respectively. SAXS data show initially a decrease in the I(0) values due to the oligomeric dissociation, and then, above 4.0mol/L of denaturant, for oxy-HbGp, and above 6.0mol/L for cyanomet-HbGp, an increase in the maximum dimension and gyration radius is observed, due to the unfolding process. According to AUC and SAXS data the HbGp unfolding is described by two phases: the first one, at low urea concentration, below 4.0mol/L, characterizes the oligomeric dissociation, while the second one, at higher urea concentration, is associated to the unfolding of dissociated species. Our results are complementary to a recent report based on spectroscopic observations. © 2012 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Hsp70 is an essential molecular chaperone in protein metabolism since it acts as a pivot with other molecular chaperone families. Several co-chaperones act as regulators of the Hsp70 action cycle, as for instance Hip (Hsp70-interacting protein). Hip is a tetratricopeptide repeat protein (TPR) that interacts with the ATPase domain in the Hsp70-ADP state, stabilizing it and preventing substrate dissociation. Molecular chaperones from protozoans, which can cause some neglected diseases, are poorly studied in terms of structure and function. Here, we investigated the structural features of Hip from the protozoa Leishmania braziliensis (LbHip), one of the causative agents of the leishmaniasis disease. LbHip was heterologously expressed and purified in the folded state, as attested by circular dichroism and intrinsic fluorescence emission techniques. LbHip forms an elongated dimer, as observed by analytical gel filtration chromatography, analytical ultracentrifugation and small angle X-ray scattering (SAXS). With the SAXS data a low resolution model was reconstructed, which shed light on the structure of this protein, emphasizing its elongated shape and suggesting its domain organization. We also investigated the chemical-induced unfolding behavior of LbHip and two transitions were observed. The first transition was related to the unfolding of the TPR domain of each protomer and the second transition of the dimer dissociation. Altogether. LbHip presents a similar structure to mammalian Hip, despite their low level of conservation, suggesting that this class of eukaryotic protein may use a similar mechanism of action. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene. Results: Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo. Conclusions: Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By pulling and releasing the tension on protein homomers with the Atomic Force Miscroscope (AFM) at different pulling speeds, dwell times and dwell distances, the observed force-response of the protein can be fitted with suitable theoretical models. In this respect we developed mathematical procedures and open-source computer codes for driving such experiments and fitting Bell’s model to experimental protein unfolding forces and protein folding frequencies. We applied the above techniques to the study of proteins GB1 (the B1 IgG-binding domain of protein G from Streptococcus) and I27 (a module of human cardiac titin) in aqueous solutions of protecting osmolytes such as dimethyl sulfoxide (DMSO), glycerol and trimethylamine N-oxide (TMAO). In order to get a molecular understanding of the experimental results we developed an Ising-like model for proteins that incorporates the osmophobic nature of their backbone. The model benefits from analytical thermodynamics and kinetics amenable to Monte-Carlo simulation. The prevailing view used to be that small protecting osmolytes bridge the separating beta-strands of proteins with mechanical resistance, presumably shifting the transition state to significantly higher distances that correlate with the molecular size of the osmolyte molecules. Our experiments showed instead that protecting osmolytes slow down protein unfolding and speed-up protein folding at physiological pH without shifting the protein transition state on the mechanical reaction coordinate. Together with the theoretical results of the Ising-model, our results lend support to the osmophobic theory according to which osmolyte stabilisation is a result of the preferential exclusion of the osmolyte molecules from the protein backbone. The results obtained during this thesis work have markedly improved our understanding of the strategy selected by Nature to strengthen protein stability in hostile environments, shifting the focus from hypothetical protein-osmolyte interactions to the more general mechanism based on the osmophobicity of the protein backbone.