960 resultados para protein supplementation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strategy comprising a winter/spring protein supplement, rumen modifier and hormonal growth promotant (Compudose 400) was used in either the first year (Tl), second year (T2), or in both years (T1+2) following weaning in Brahman cross steers as a means of increasing liveweight gain up to 2.5 years of age. T2 produced the heaviest final liveweight (544.7 kg) and highest overall liveweight gain (366.7 kg), but these were not significantly different from T1 (538.6 kg; 360.9 kg), or T1+2 (528.7 kg; 349.3 kg). However, final liveweight and overall liveweight gains of T1 and T2 but not T1+2 were significantly greater than for untreated (C) steers (504.9 kg; 325.2 kg, both P < 0.05). Regardless of the strategy imposed, liveweight and liveweight gain were enhanced, however final liveweights in each treatment were below the preferred minimum target liveweight (570-580 kg) for premium export markets. Treatment in both years gave no benefit over treatment in 1 year only. 19th Biennial Conference. 5-9 July 1992. LaTrobe University, Melbourne.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two experiments were undertaken in which grass silage was used in conjunction with a series of different concentrate types designed to examine the effect of carbohydrate source, protein level and degradability on total dietary phosphorus (P) utilization with emphasis on P pollution. Twelve Holstein-Friesian dairy cows in early to mid-lactation were used in an incomplete changeover design with four periods consisting of 4 weeks each. Phosphorus intake ranged from 54 to 80 g/day and faecal P represented the principal route by which ingested P was disposed of by cows, with insignificant amounts being voided in urine. A positive linear relationship between faecal P and P intake was established. In Experiment 1, P utilization was affected by dietary carbohydrate type, with an associated output of 3.3 g faecal P/g milk P produced for all treatments except those utilizing low degradable starch and low protein supplements, where a mean value of 2.8 g faecal P/g milk P was observed. In Experiment 2, where two protein levels and three protein degradabilities were examined, the efficiency of P utilization for milk P production was not affected by either level or degradability of crude protein (CP) but a significant reduction in faecal P excretion due to lower protein and P intake was observed. In general, P utilization in Experiment 2 was substantially improved compared to the Experiment 1, with an associated output of 1.8 g faecal P/g milk P produced. The improved utilization of P in Experiment 2 could be due to lower P content of the diets offered and higher dry matter (DM) intake. For dairy cows weighing 600 kg, consuming 17-18 kg DM/day and producing about 25 kg milk, P excretion in faeces and hence P pollution to the environment might be minimized without compromising lactational performance by formulating diets to supply about 68 g P/day, which is close to recent published recommended requirements for P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was conducted to investigate the effects of wheat straw ammonisation and supplementation with a rumen undegradable protein (UDP) source on nutrient digestion and nitrogen balance by lambs while diets were supplemented with kibbled carob pods as energy source. Ammonisation increased the crude protein content of wheat straw by nearly 100% and decreased the contents of neutral detergent fibre and acid detergent fibre by 7% and 1.7% respectively. Treating the straw with ammonia resulted in significant (P<0.01) increase in nitrogen (N) intake and intakes of organic matter (OM) and dry matter (DM) tended toward significance (P<0.1). The UDP source had no effect (P>0.05) on DM and OM intakes but resulted in an increase (P<0.05) of N intakes. Both, ammonization and UDP supplementation increased (P<0.01) the DM, OM and N digestibility. In conclusion, the results of this study suggest that ammonisation and UDP supplementation is a practical dietary manipulation option to improve the nutritional status of ruminants fed on roughage-based diets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P < 0.001), while pSRF protein levels increased similarly by 48% with both CONC and ECC exercise (P < 0.001). Prolonged ECC and CONC training equally stimulated muscle hypertrophy and produced increases in MRTF-A protein of 125% and 99%, respectively (P < 0.001). No changes occurred for total SRF protein. There was no effect of whey protein supplementation. These results show that resistance exercise provides an acute stimulation of the STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this experiment was to determine if frequency of protein supplementation impacts physiological responses associated with reproduction in beef cows. Fourteen nonpregnant, nonlactating beef cows were ranked by age and BW and allocated to 3 groups. Groups were assigned to a 3 x 3 Latin square design, containing 3 periods of 21 d and the following treatments: 1) soybean meal supplementation daily (D), 2) soybean meal supplementation 3 times/week (3WK), and 3) soybean meal supplementation once/week (1WK). Within each period, cows were assigned to an estrus synchronization protocol: 100 mu g of GnRH + controlled internal drug release device (CIDR) containing 1.38 g of progesterone (P-4) on d 1, 25 mg of PGF(2 alpha) on d 8, and CIDR removal + 100 mu g of GnRH on d 11. Grass-seed straw was offered for ad libitum consumption. Soybean meal was individually supplemented at a daily rate of 1 kg/cow (as-fed basis). Moreover, 3WK was supplemented on d 0, 2, 4, 7, 9, 11, 14, 16, and 18 whereas 1WK was supplemented on d 4, 11, and 18. Blood samples were collected from 0 (before) to 72 h after supplementation on d 11 and 18 and analyzed for plasma urea-N (PUN). Samples collected from 0 to 12 h were also analyzed for plasma glucose, insulin, and P-4 (d 18 only). Uterine flushing fluid was collected concurrently with blood sampling at 28 h for pH evaluation. Liver biopsies were performed concurrently with blood sampling at 0, 4, and 28 h and analyzed for mRNA expression of carbamoyl phosphate synthetase I (CPS-I; h 28) and CYP2C19 and CYP3A4 (h 0 and 4 on d 18). Plasma urea-N concentrations were greater (P < 0.01) for 1WK vs. 3WK from 20 to 72 h and greater (P < 0.01) for 1WK vs. D from 16 to 48 h and at 72 h after supplementation (treatment x hour interaction, P < 0.01). Moreover, PUN concentrations peaked at 28 h after supplementation for 3WK and 1WK (P < 0.01) and were greater (P < 0.01) at this time for 1WK vs. 3WK and D and for 3WK vs. D. Expression of CPS-I was greater (P < 0.01) for 1WK vs. D and 3WK. Uterine flushing pH tended (P <= 0.10) to be greater for 1WK vs. 3WK and D. No treatment effects were detected (P >= 0.15) on expression of CYP2C19 and CYP3A4, plasma glucose, and P-4 concentrations, whereas plasma insulin concentrations were greater (P <= 0.03) in D and 3WK vs. 1WK. Hence, decreasing frequency of protein supplementation did not reduce uterine flushing pH or plasma P-4 concentrations, which are known to impact reproduction in beef cows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High protein diets have been shown to improve hepatic steatosis in rodent models and in high-fat fed humans. We therefore evaluated the effects of a protein supplementation on intrahepatocellular lipids (IHCL), and fasting plasma triglycerides in obese non diabetic women.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: We determined the effect of protein supplementation on anabolic signaling and rates of myofibrillar and mitochondrial protein synthesis after a single bout of concurrent training. METHODS: Using a randomized cross-over design, 8 healthy males were assigned to experimental trials consisting of resistance exercise (8 × 5 leg extension, 80% 1-RM) followed by cycling (30 min at ~70% VO2peak) with either post-exercise protein (PRO: 25 g whey protein) or placebo (PLA) ingestion. Muscle biopsies were obtained at rest, 1 and 4 h post-exercise. RESULTS: Akt and mTOR phosphorylation increased 1 h after exercise with PRO (175-400%, P<0.01) and was different from PLA (150-300%, P<0.001). MuRF1 and Atrogin-1 mRNA were elevated post-exercise but were higher with PLA compared to PRO at 1 h (50-315%, P<0.05), while PGC-1α mRNA increased 4 h post-exercise (620-730%, P<0.001) with no difference between treatments. Post-exercise rates of myofibrillar protein synthesis increased above rest in both trials (75-145%, P <0.05) but were higher with PRO (67%, P<0.05) while mitochondrial protein synthesis did not change from baseline. CONCLUSION: Our results show that a concurrent training session promotes anabolic adaptive responses and increases metabolic/oxidative mRNA expression in skeletal muscle. Protein ingestion after combined resistance and endurance exercise enhances myofibrillar protein synthesis and attenuates markers of muscle catabolism and thus is likely an important nutritional strategy to enhance adaptation responses with concurrent training.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the tropics, a large number of smallholder farms contribute significantly to food security by raising pigs and poultry for domestic consumption and for sale on local markets. The high cost and, sometimes, the lack of availability of commercial protein supplements is one of the main limitations to efficient animal production by smallholders. Locally-grown forages and grain legumes offer ecological benefits such as nitrogen fixation, soil improvement, and erosion control which contribute to improve cropping efficiency. Besides these agronomical assets, they can be used as animal feeds in mixed farming systems. In this paper we review options to include locally-grown forages and grain legumes as alternative protein sources in the diets of pigs and poultry in order to reduce farmers’ dependence on externally-purchased protein concentrates. The potential nutritive value of a wide range of forages and grain legumes is presented and discussed. The influence of dietary fibre and plant secondary metabolites contents and their antinutritive consequences on feed intake, digestive processes and animal performances are considered according to the varying composition in those compounds of the different plant species and cultivars covered in this review. Finally, methods to overcome the antinutritive attributes of the plant secondary metabolites using heat, chemical or biological treatment are reviewed regarding their efficiency and their suitability in low input farming systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To assess the effect of soy protein and progressive resistance training on body composition and lipids in postmenopausal women.Design: In a controlled trial, 46 postmenopausal women were randomized to one of four groups: 25 g of soy protein (SP, n = 10), 25 g of soy protein plus resistance exercise (SPE, n = 14), 25 g of maltodextrine (placebo) (PL, n = 11), or placebo plus resistance exercise (PLE, n = 11). Progressive resistance training was held three times a week for 16 weeks and included 8 exercises (3 series of 8-12 repetitions). At baseline and after 16 weeks, body mass index, waist circumference (WC), body fat, muscle mass and serum lipid levels were measured. To confirm isoflavone absorption, urinary concentrations were determined. The t-test of Student and ANOVA were used in the statistical analysis.Results: Subjects were classified as overweight and showed android fat distribution: Urinary isoflavone excretion indicated compliance to soy protein treatment. After 16 weeks of intervention, both SPE and PLE groups showed a significant increase of 1.3 kg in muscle mass and reduction in WC of -1.4 and -2.1 cm, respectively (p < 0.05). Significant decreases in the mean values of total cholesterol and LDL (-29.0 and -24.0 mg/dL, p < 0.001 and p < 0.006, respectively) were observed in the users of soy protein alone (SP).Conclusions: Soy protein supplementation did not influence the indicators of body composition. However, it exerted possible favorable effects on lipid profile in postmenopausal women. The increase in muscle mass and reduction in abdominal fat were correlated with resistance training. (c) 2006 Elsevier B.V.. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The feasibility of ex vivo blood production is limited by both biological and engineering challenges. From an engineering perspective, these challenges include the significant volumes required to generate even a single unit of a blood product, as well as the correspondingly high protein consumption required for such large volume cultures. Membrane bioreactors, such as hollow fiber bioreactors (HFBRs), enable cell densities approximately 100-fold greater than traditional culture systems and therefore may enable a significant reduction in culture working volumes. As cultured cells, and larger molecules, are retained within a fraction of the system volume, via a semipermeable membrane it may be possible to reduce protein consumption by limiting supplementation to only this fraction. Typically, HFBRs are complex perfusion systems having total volumes incompatible with bench scale screening and optimization of stem cell-based cultures. In this article we describe the use of a simplified HFBR system to assess the feasibility of this technology to produce blood products from umbilical cord blood-derived CD34+ hematopoietic stem progenitor cells (HSPCs). Unlike conventional HFBR systems used for protein manufacture, where cells are cultured in the extracapillary space, we have cultured cells in the intracapillary space, which is likely more compatible with the large-scale production of blood cell suspension cultures. Using this platform we direct HSPCs down the myeloid lineage, while targeting a 100-fold increase in cell density and the use of protein-free bulk medium. Our results demonstrate the potential of this system to deliver high cell densities, even in the absence of protein supplementation of the bulk medium.