924 resultados para protein p53 inducible protein phosphatase gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abscisic acid (ABA) modulates the activities of three major classes of ion channels--inward- and outward-rectifying K+ channels (IK,in and IK,out, respectively) and anion channels--at the guard-cell plasma membrane to achieve a net efflux of osmotica and stomatal closure. Disruption of ABA sensitivity in wilty abi1-1 mutants of Arabidopsis and evidence that this gene encodes a protein phosphatase suggest that protein (de)-phosphorylation contributes to guard-cell transport control by ABA. To pinpoint the role of ABI1, the abi1-1 dominant mutant allele was stably transformed into Nicotiana benthamiana and its influence on IK,in, IK,out, and the anion channels was monitored in guard cells under voltage clamp. Compared with guard cells from wild-type and vector-transformed control plants, expression of the abi1-1 gene was associated with 2- to 6-fold reductions in IK,out and an insensitivity of both IK,in and IK,out to 20 microM ABA. In contrast, no differences between control and abi1-1 transgenic plants were observed in the anion current or its response to ABA. Parallel measurements of intracellular pH (pHi) using the fluorescent dye 2',7'-bis(2-carboxyethyl)-5-(and -6)-carboxyfluorescein (BCECF) in every case showed a 0.15- to 0.2-pH-unit alkalinization in ABA, demonstrating that the transgene was without effect on the pHi signal that mediates in ABA-evoked K+ channel control. In guard cells from the abi1-1 transformants, normal sensitivity of both K+ channels to and stomatal closure in ABA was recovered in the presence of 100 microM H7 and 0.5 microM staurosporine, both broad-range protein kinase antagonists. These results demonstrate an aberrant K+ channel behavior--including channel insensitivity to ABA-dependent alkalinization of pHi--as a major consequence of abi1-1 action and implicate AB11 as part of a phosphatase/kinase pathway that modulates the sensitivity of guard-cell K+ channels to ABA-evoked signal cascades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptidoglycan recognition proteins (PGRPs) are a type of pattern recognition molecules (PRM) that recognize the unique cell wall component peptidoglycan (PGN) of bacteria and are involved in innate immunity. The first bivalve PGRP cDNA sequence was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and PCR technique. The full-length cDNA of bay scallop PGRP (designated AiPGRP) gene contained 10 18 bp with a 615-bp open reading frame that encoded a polypeptide of 205 amino acids. The predicted amino acid sequence of AiPGRP shared high identity with PGRP in other organisms, such as PGRP precursor in Trichoplusia ni and PGRP SC2 in Drosophila melanogaster. A quantitative reverse transcriptase Real-Time PCR (qRT-PCR) assay was developed to assess the mRNA expression of AiPGRP in different tissues and the temporal expression of AiPGRP in the mixed primary cultured hemocytes challenged by microbial components lipopolyssacharide (LPS) from Escherichia coli and PGN from Micrococcus luteus. Higher-level mRNA expression of AiPGRP was detected in the tissues of hemocytes, gonad and kidney. The expression of AiPGRP in the mixed primary cultured hemocytes was up regulated after stimulated by PGN, while LPS from E. coli did not induce AiPGRP expression. The results indicated that AiPGRP was a constitutive and inducible expressed protein that was mainly induced by PGN and could be involved in scallop immune response against Gram-positive bacteria infection. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nephrogenic dopamine is a potent natriuretic paracrine/autocrine hormone that is central for mammalian sodium homeostasis. In the renal proximal tubule, dopamine induces natriuresis partly via inhibition of the sodium/proton exchanger NHE3. The signal transduction pathways and mechanisms by which dopamine inhibits NHE3 are complex and incompletely understood. This manuscript describes the role of the serine/threonine protein phosphatase 2A (PP2A) in the regulation of NHE3 by dopamine. The PP2A regulatory subunit B56 delta (coded by the Ppp2r5d gene) directly associates with more than one region of the carboxy-terminal hydrophilic putative cytoplasmic domain of NHE3 (NHE3-cyto), as demonstrated by yeast-two-hybrid, co-immunoprecipitation, blot overlay and in vitro pull-down assays. Phosphorylated NHE3-cyto is a substrate for purified PP2A in an in vitro dephosphorylation reaction. In cultured renal cells, inhibition of PP2A by either okadaic acid or by overexpression of the simian virus 40 (SV40) small t antigen blocks the ability of dopamine to inhibit NHE3 activity and to reduce surface NHE3 protein. Dopamine-induced NHE3 redistribution is also blocked by okadaic acid ex vivo in rat kidney cortical slices. These studies demonstrate that PP2A is an integral and critical participant in the signal transduction pathway between dopamine receptor activation and NHE3 inhibition. Key words: Natriuresis, Sodium transport, Signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein phosphatase 2A (PP2A) is a multimeric enzyme, containing a catalytic subunit complexed with two regulatory subunits. The catalytic subunit PP2A C is encoded by two distinct and unlinked genes, termed Cα and Cβ. The specific function of these two catalytic subunits is unknown. To address the possible redundancy between PP2A and related phosphatases as well as between Cα and Cβ, the Cα subunit gene was deleted by homologous recombination. Homozygous null mutant mice are embryonically lethal, demonstrating that the Cα subunit gene is an essential gene. As PP2A exerts a range of cellular functions including cell cycle regulation and cell fate determination, we were surprised to find that these embryos develop normally until postimplantation, around embryonic day 5.5/6.0. While no Cα protein is expressed, we find comparable expression levels of PP2A C at a time when the embryo is degenerating. Despite a 97% amino acid identity, Cβ cannot completely compensate for the absence of Cα. Degenerated embryos can be recovered even at embryonic day 13.5, indicating that although embryonic tissue is still capable of proliferating, normal differentiation is significantly impaired. While the primary germ layers ectoderm and endoderm are formed, mesoderm is not formed in degenerating embryos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous growth and development in plants are accomplished by meristems, groups of undifferentiated cells that persist as stem cells and initiate organs. While the structures of the apical and floral meristems in dicotyledonous plants have been well described, little is known about the underlying molecular mechanisms controlling cell proliferation and differentiation in these structures. We have shown previously that the CLAVATA1 (CLV1) gene in Arabidopsis encodes a receptor kinase-like protein that controls the size of the apical and floral meristems. Here, we show that KAPP, a gene encoding a kinase-associated protein phosphatase, is expressed in apical and young floral meristems, along with CLV1. Overexpression of KAPP mimics the clv1 mutant phenotype. Furthermore, CLV1 has kinase activity: it phosphorylates both itself and KAPP. Finally, KAPP binds and dephosphorylates CLV1. We present a model where KAPP functions as a negative regulator of the CLAVATA1 signal transduction pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene ptc4+ encodes one of four type 2C protein phosphatases (PP2C) in the fission yeast Schizosaccharomyces pombe. Deletion of ptc4+ is not lethal; however, Δptc4 cells grow slowly in defined minimal medium and undergo premature growth arrest in response to nitrogen starvation. Interestingly, Δptc4 cells are unable to fuse vacuoles in response to hypotonic stress or nutrient starvation. Conversely, Ptc4 overexpression appears to induce vacuole fusion. These findings reveal a hitherto unrecognized function of type 2C protein phosphatases: regulation of vacuole fusion. Ptc4 localizes in vacuole membranes, which suggests that Ptc4 regulates vacuole fusion by dephosphorylation of one or more proteins in the vacuole membrane. Vacuole function is required for the process of autophagy that is induced by nutrient starvation; thus, the vacuole defect of Δptc4 cells might explain why these cells undergo premature growth arrest in response to nitrogen starvation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Opitz syndrome (OS) is a human genetic disease characterized by deformities such as cleft palate that are attributable to defects in embryonic development at the midline. Gene mapping has identified OS mutations within a protein called Mid1. Wild-type Mid1 predominantly colocalizes with microtubules, in contrast to mutant versions of Mid1 that appear clustered in the cytosol. Using yeast two-hybrid screening, we found that the α4-subunit of protein phosphatases 2A/4/6 binds Mid1. Epitope-tagged α4 coimmunoprecipitated endogenous or coexpressed Mid1 from COS7 cells, and this required only the conserved C-terminal region of α4. Localization of Mid1 and α4 was influenced by one another in transiently transfected cells. Mid1 could recruit α4 onto microtubules, and high levels of α4 could displace Mid1 into the cytosol. Metabolic 32P labeling of cells showed that Mid1 is a phosphoprotein, and coexpression of full-length α4 decreased Mid1 phosphorylation, indicative of a functional interaction. Association of green fluorescent protein–Mid1 with microtubules in living cells was perturbed by inhibitors of MAP kinase activation. The conclusion is that Mid1 association with microtubules, which seems important for normal midline development, is regulated by dynamic phosphorylation involving MAP kinase and protein phosphatase that is targeted specifically to Mid1 by α4. Human birth defects may result from environmental or genetic disruption of this regulatory cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CLAVATA1 (CLV1) gene encodes a putative receptor kinase required for the proper balance between cell proliferation and differentiation in Arabidopsis shoot and flower meristems. Impaired CLV1 signaling results in masses of undifferentiated cells at the shoot and floral meristems. Although many putative receptor kinases have been identified in plants, the mechanism of signal transduction mediated by plant receptor-like kinases is largely unknown. One potential effector of receptor kinase signaling is kinase-associated protein phosphatase (KAPP), a protein that binds to multiple plant receptor-like kinases in a phosphorylation-dependent manner. To examine a possible role for KAPP in CLV1-dependent plant development, the interaction of CLV1 and KAPP was investigated in vitro and in vivo. KAPP binds directly to autophosphorylated CLV1 in vitro and co-immunoprecipitates with CLV1 in plant extracts derived from meristematic tissue. Reduction of KAPP transcript accumulation in an intermediate clv1 mutant suppresses the mutant phenotype, and the degree of suppression is inversely correlated with KAPP mRNA levels. These data suggest that KAPP functions as a negative regulator of CLV1 signaling in plant development. This may represent a general model for the interaction of KAPP with receptor kinases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case-control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10-5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10-4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10-9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleolin is a major nucleolar phosphoprotein involved in various steps of ribosome biogenesis in eukaryotic cells. As nucleolin plays a significant role in ribosomal RNA transcription we were interested in examining in detail the expression of nucleolin across different stages of spermatogenesis and correlate with the transcription status of ribosomal DNA in germ cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive dimerization assay for DNA binding proteins has been developed using gene fusion technology. For this purpose, we have engineered a gene fusion using protein A gene of Staphylococcus aureus and C gene, the late gene transactivator of bacteriophage Mu. The C gene was fused to the 3' end of the gene for protein A to generate an A- C fusion. The overexpressed fusion protein was purified in a single step using immunoglobulin affinity chromatography. Purified fusion protein exhibits DNA binding activity as demonstrated by electrophoretic mobility shift assays. When the fusion protein A-C was mixed with C and analyzed for DNA binding, in addition to C and A-C specific complexes, a single intermediate complex comprising of a heterodimer of C and A-C fusion proteins was observed. Further, the protein A moiety in the fusion protein A-C does not contribute to DNA binding as demonstrated by proteolytic cleavage and circular dichroism (CD) analysis. The assay has also been applied to analyze the DNA binding domain of C protein by generating fusions between protein A and N- and C-terminal deletion mutants of C. The results indicate a role for the region towards the carboxy terminal of the protein in DNA binding. The general applicability of this method is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 ( glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the ``intron'' regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing.