994 resultados para prostate development


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnol[ogico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New vessel formation, a highly-regulated, active process commencing in the embryo and evident notably during the pubertal growth spurt, is essential for normal prostate development. Reactivation of this process in response to physiological stimuli, particularly hypoxia in mature tissues, occurs with new vessels forming principally from stromal components. Although angiogenesis is complex, putatively involving a multitude of angiogenic factors and inhibitors, there is powerful evidence of the importance of the VEGF system in the development of both the normal prostate and prostate cancer. Recent advances include an understanding of how castration acts through the VEGF system to inhibit angiogenesis. Stromal-endothelial and epithelial-endothelial interactions are just beginning to be investigated. A better understanding of how physiological angiogenesis is controlled should help to provide further insights into the mechanism of disregulated angiogenesis in tumours. Ultimately, new antiangiogenic agents are likely to find a role in the management of patients with prostate cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The initial events in prostatic morphogenesis involve cell proliferation, epithelial canalization and outgrowth toward the stroma. We have hypothesized that stromal rearrangement takes place at the sites of epithelial growth and branching and that this rearrangement involves the action of gelatinases matrix metalloproteinase (MMP)-2 and MMP-9. Thus, the purpose of the present study was to characterize structural aspects of epithelial growth during the first week of postnatal development of the rat ventral prostate and to investigate the expression, localization and activity of MMP-2 and MMP-9 during this period by histological, ultrastructural and immunocytochemical analysis, in addition to gel zymography, in situ zymography and Western blotting. An increasing complexity of prostatic architeture was observed within the first postnatal week. Concurrently, the stroma became more organized and some cells differentiated into smooth muscle cells. Reticulin fibers appeared in a basket-like arrangement around both growing tips and epithelial sprouts, associated with a fainter staining for laminin. MMP-2 and MMP-9 activities were detected. MMP-2/MMP-9 expression decreased during the first week. Developing epithelial cords showed strong and difuse gelatinolytic activity. This activity coincided with the distribution of MMP-2 as determined by immunocytochemistry. on the other hand, MMP-9 was rather concentrated at the epithelial tips. These results suggest that gelatinolytic activity (with contribution of both MMP-2 and MMP-9) in the epithelium and at the epithelium-stroma interface are at least in part responsible for the tissue remodeling that allows epithelial growth and its projection into the surrounding stroma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stimulation of the androgen receptor via bioavailable androgens, including testosterone and testosterone metabolites, is a key driver of prostate development and the early stages of prostate cancer. Androgens are hydrophobic and as such require carrier proteins, including sex hormone-binding globulin (SHBG), to enable efficient distribution from sites of biosynthesis to target tissues. The similarly hydrophobic corticosteroids also require a carrier protein whose affinity for steroid is modulated by proteolysis. However, proteolytic mechanisms regulating the SHBG/androgen complex have not been reported. Here, we show that the cancer-associated serine proteases, kallikrein-related peptidase (KLK)4 and KLK14, bind strongly to SHBG in glutathione S-transferase interaction analyses. Further, we demonstrate that active KLK4 and KLK14 cleave human SHBG at unique sites and in an androgen-dependent manner. KLK4 separated androgen-free SHBG into its two laminin G-like (LG) domains that were subsequently proteolytically stable even after prolonged digestion, whereas a catalytically equivalent amount of KLK14 reduced SHBG to small peptide fragments over the same period. Conversely, proteolysis of 5α-dihydrotestosterone (DHT)-bound SHBG was similar for both KLKs and left the steroid binding LG4 domain intact. Characterization of this proteolysis fragment by [(3)H]-labeled DHT binding assays revealed that it retained identical affinity for androgen compared with full-length SHBG (dissociation constant = 1.92 nM). Consistent with this, both full-length SHBG and SHBG-LG4 significantly increased DHT-mediated transcriptional activity of the androgen receptor compared with DHT delivered without carrier protein. Collectively, these data provide the first evidence that SHBG is a target for proteolysis and demonstrate that a stable fragment derived from proteolysis of steroid-bound SHBG retains binding function in vitro.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Morphological and stereological analyses were used to characterize the growth kinetics of the Wistar rat ventral prostate (VP). Volume density and absolute volume of the epithelium, lumen, smooth muscle cells (SMCs), and nonmuscular stroma were determined by stereology and paired with plasma testosterone levels and different morphometric measurements. The VP shows an initial growth within the first 3 weeks, a resting phase, and the puberal growth. The puberal growth was coincident with the raise in plasma testosterone. Lumen formation occurred within the 3 postnatal weeks. After an expected increase during puberty, the lumen showed a further increase at the 12th week. The volume density of the nonmuscular stroma and of the SMCs decreased slowly postnatally. Absolute volume of the luminal compartment showed three phases of growth (weeks 1-3, 6-9, and 11-12). on the other hand, the increase in the absolute volume of the epithelium was steady up to the 8th week and then showed a marked increase up the 10th week. The increase in epithelial volume was characterized morphologically by the presence of epithelial infoldings and sprouts. The growth of the epithelium showed a 2-week delay as compared to the lumen and occurred only until the 10th week. The epithelial height was variable but could be related to the synthetic activity of the epithelium. In conclusion, the postnatal growth of the VP results from a combination of epithelial proliferation/differentiation and synthesis/accumulation of the secretory products in the lumen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Knowledge of structural and physiological differences among the prostatic lobes (PL) is the basis for development of experimental studies in traditional laboratory rodents. Although Mongolian gerbil reproductive organs have been increasingly investigated, its prostate structure is far from being properly known, and investigations of this organ focused on the ventral lobe (VL). Thus, the present study provides a thorough morphological description of prostatic complex in the male adult gerbil on the basis of topographic, histological, and ultrastructural analysis and ductal branching. Like other rodents, four pairs of PL were observed. However, in contrast to the rat and mouse, the VL is the least voluminous component and the dorsolateral lobe (DLL) is the most prominent and spatially isolated from remaining PL. The occurrence of a dorsal lobe (DL), hidden between bladder and insertion of seminal vesicles, has not been mentioned in previous reports with Mongolian gerbil. Collagenase digestion followed by microdissection revealed that, except for DL, which has a tubularacinar organization, all PL exhibit tubular organization and variable ductal branching. Distinct histological and ultrastructural features such as secretory epithelium, aspect of luminal secretion and stromal organization are reported for each PL and are confirmed by morphometric and stereological methods. Histological sections showed at least three intralobar segments in VL and DL. Ultrastructural analysis evidenced that, although luminal epithelial cells of PL share typical features of exocrine secretory cells, there are striking lobe phenotypical variations. Both merocrine and apocrine pathways are observed in variable rates in all PL, with the predominance of the former in the DLL and the latter in the CG. The morphological observations presented herein point to distinct structural identities for each PL, which probably reflects,specific functional compromise of seminal fluid secretion. These data also point to the gerbil as a good model for investigations concerning the regulation of prostate development and homeostasis, mainly with regard to the dorsal and dorsolateral PL.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims Maternal malnutrition by low protein diet is associated with an increased incidence of metabolic disorders and decreased male fertility in adult life. This study aimed to assess the impact of maternal protein malnutrition (MPM) on prostate growth, tissue organization and lesion incidence with aging. Main methods Wistar rat dams were distributed into two groups, which were control (NP; fed a normal diet containing 17% protein) or a restricted protein diet (RP, fed a diet containing 6% protein) during gestation. After delivery all mothers and offspring received a normal diet. Biometrical parameters, hormonal levels and prostates were harvested at post-natal days (PND) 30, 120 and 360. Key findings MPM promoted low birth weight, decreased ano-genital distance (AGD) and reduced androgen plasma levels of male pups. Prostatic lobes from RP groups presented reduced glandular weight, epithelial cell height and alveolar diameter. The epithelial cell proliferation and collagen deposition were increased in RP group. Incidences of epithelial dysplasia and prostatitis were higher in the RP offspring than in the NP offspring at PND360. Significance Our findings show that MPM delays prostate development, growth and maturation until adulthood, probably as a result of low testosterone stimuli. The higher incidence of cellular dysplasia and prostatitis suggests that MPM increases prostate susceptibility to diseases with aging. © 2013 Elsevier Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bisphenol A (BPA) is one hormonally active chemical with potential deleterious effects on reproductive organs, including breast and prostate. In contrast, genistein (GEN) is the major phytoestrogen of soy that presents potential protective effects against hormone-dependent cancers, including that of the prostate. Thus, pregnant Sprague-Dawley rats were treated with BPA at 25 or 250 μg/kg/day by gavage from gestational day (GD) 10-21 with or without dietary GEN at 250 mg/kg/chow (∼5.5 mg/kg/day). Then, male offspring from different litters were euthanized on post-natal day (PND) 21 and 180. At PND21, BPA 25 exposure induced early prostatic changes while dietary GEN attenuated some deleterious actions this xenoestrogen on epithelial cell proliferation levels, androgen receptor expression and prostatic architecture in male offspring. At PND180, a significant increase in incidence of prostatic multifocal inflammation/reactive hyperplasia and atypical hyperplasia were observed in male offspring from dams that received BPA 25. On the other hand, maternal GEN feeding attenuated some the adverse effects of BPA 25 on prostate disease at late-in-life. This way, the present findings point to preventive action of dietary GEN on deleterious effects of gestational BPA exposure in both early and late prostate development in offspring F1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Substances that mimic endogenous hormones may alter the cell signaling that govern prostate development and predispose it to developing lesions in adult and senile life. Bisphenol A is able to mimic estrogens, and studies have demonstrated that low levels of exposure to this compound have caused alterations during prostate development. The aim of this study was to describe the prostate development in both male and female neonatal gerbils in normal conditions and under exposure to BPA during intrauterine life, and also to analyze whether the effects of intrauterine exposure to BPA remain in adulthood. Morphological, stereological, three-dimensional reconstruction, and immunohistochemical methods were employed. The results demonstrated that in 1-day-old normal gerbils, the female paraurethral glands and the male ventral lobe are morphologically similar, although its tissue components-epithelial buds (EB), periurethral mesenchyme (PeM), paraurethral mesenchyme (PaM) or ventral mesenchymal pad (VMP), and smooth muscle (SM)-have presented different immunolabeling pattern for androgen receptor (AR), and for proliferating cell nuclear antigen (PCNA). Moreover, we observed a differential response of male and female prostate to intrauterine BPA exposure. In 1-day-old males, the intrauterine exposure to BPA caused a decrease of AR-positive cells in the PeM and SM, and a decrease of the proliferative status in the EB. In contrast, no morphological alterations were observed in ventral prostate of adult males. In 1-day-old females, BPA exposure promoted an increase of estrogen receptor alpha (ERα) positive cells in PeM and PaM, a decrease of AR-positive cells in EB and PeM, besides a reduction of cell proliferation in EB. Additionally, the adult female prostate of BPA-exposed animals presented an increase of AR- and PCNA-positive cells. These results suggest that the prostate of female gerbils were more susceptible to the intrauterine BPA effects, since they became more proliferative in adult life. © 2015 Wiley Periodicals, Inc. Environ Toxicol, 2015.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prostate cancer is an important male health issue. The strategies used to diagnose and treat prostate cancer underscore the cell and molecular interactions that promote disease progression. Prostate cancer is histologically defined by increasingly undifferentiated tumour cells and therapeutically targeted by androgen ablation. Even as the normal glandular architecture of the adult prostate is lost, prostate cancer cells remain dependent on the androgen receptor (AR) for growth and survival. This project focused on androgen-regulated gene expression, altered cellular differentiation, and the nexus between these two concepts. The AR controls prostate development, homeostasis and cancer progression by regulating the expression of downstream genes. Kallikrein-related serine peptidases are prominent transcriptional targets of AR in the adult prostate. Kallikrein 3 (KLK3), which is commonly referred to as prostate-specific antigen, is the current serum biomarker for prostate cancer. Other kallikreins are potential adjunct biomarkers. As secreted proteases, kallikreins act through enzyme cascades that may modulate the prostate cancer microenvironment. Both as a panel of biomarkers and cascade of proteases, the roles of kallikreins are interconnected. Yet the expression and regulation of different kallikreins in prostate cancer has not been compared. In this study, a spectrum of prostate cell lines was used to evaluate the expression profile of all 15 members of the kallikrein family. A cluster of genes was co-ordinately expressed in androgenresponsive cell lines. This group of kallikreins included KLK2, 3, 4 and 15, which are located adjacent to one another at the centromeric end of the kallikrein locus. KLK14 was also of interest, because it was ubiquitously expressed among the prostate cell lines. Immunohistochemistry showed that these 5 kallikreins are co-expressed in benign and malignant prostate tissue. The androgen-regulated expression of KLK2 and KLK3 is well-characterised, but has not been compared with other kallikreins. Therefore, KLK2, 3, 4, 14 and 15 expression were all measured in time course and dose response experiments with androgens, AR-antagonist treatments, hormone deprivation experiments and cells transfected with AR siRNA. Collectively, these experiments demonstrated that prostatic kallikreins are specifically and directly regulated by the AR. The data also revealed that kallikrein genes are differentially regulated by androgens; KLK2 and KLK3 were strongly up-regulated, KLK4 and KLK15 were modestly up-regulated, and KLK14 was repressed. Notably, KLK14 is located at the telomeric end of the kallikrein locus, far away from the centromeric cluster of kallikreins that are stimulated by androgens. These results show that the expression of KLK2, 3, 4, 14 and 15 is maintained in prostate cancer, but that these genes exhibit different responses to androgens. This makes the kallikrein locus an ideal model to investigate AR signalling. The increasingly dedifferentiated phenotype of aggressive prostate cancer cells is accompanied by the re-expression of signalling molecules that are usually expressed during embryogenesis and foetal tissue development. The Wnt pathway is one developmental cascade that is reactivated in prostate cancer. The canonical Wnt cascade regulates the intracellular levels of β-catenin, a potent transcriptional co-activator of T-cell factor (TCF) transcription factors. Notably, β-catenin can also bind to the AR and synergistically stimulate androgen-mediated gene expression. This is at the expense of typical Wnt/TCF target genes, because the AR:β-catenin and TCF:β-catenin interactions are mutually exclusive. The effect of β-catenin on kallikrein expression was examined to further investigate the role of β-catenin in prostate cancer. Stable knockdown of β-catenin in LNCaP prostate cancer cells attenuated the androgen-regulated expression of KLK2, 3, 4 and 15, but not KLK14. To test whether KLK14 is instead a TCF:β-catenin target gene, the endogenous levels of β-catenin were increased by inhibiting its degradation. Although KLK14 expression was up-regulated by these treatments, siRNA knockdown of β-catenin demonstrated that this effect was independent of β-catenin. These results show that β-catenin is required for maximal expression of KLK2, 3, 4 and 15, but not KLK14. Developmental cells and tumour cells express a similar repertoire of signalling molecules, which means that these different cell types are responsive to one another. Previous reports have shown that stem cells and foetal tissues can reprogram aggressive cancer cells to less aggressive phenotypes by restoring the balance to developmental signalling pathways that are highly dysregulated in cancer. To investigate this phenomenon in prostate cancer, DU145 and PC-3 prostate cancer cells were cultured on matrices pre-conditioned with human embryonic stem cells (hESCs). Soft agar assays showed that prostate cancer cells exposed to hESC conditioned matrices had reduced clonogenicity compared with cells harvested from control matrices. A recent study demonstrated that this effect was partially due to hESC-derived Lefty, an antagonist of Nodal. A member of the transforming growth factor β (TGFβ) superfamily, Nodal regulates embryogenesis and is re-expressed in cancer. The role of Nodal in prostate cancer has not previously been reported. Therefore, the expression and function of the Nodal signalling pathway in prostate cancer was investigated. Western blots confirmed that Nodal is expressed in DU145 and PC-3 cells. Immunohistochemistry revealed greater expression of Nodal in malignant versus benign glands. Notably, the Nodal inhibitor, Lefty, was not expressed at the mRNA level in any prostate cell lines tested. The Nodal signalling pathway is functionally active in prostate cancer cells. Recombinant Nodal treatments triggered downstream phosphorylation of Smad2 in DU145 and LNCaP cells, and stably-transfected Nodal increased the clonogencity of LNCaP cells. Nodal was also found to modulate AR signalling. Nodal reduced the activity of an androgen-regulated KLK3 promoter construct in luciferase assays and attenuated the endogenous expression of AR target genes including prostatic kallikreins. These results demonstrate that Nodal is a novel example of a developmental signalling molecule that is reexpressed in prostate cancer and may have a functional role in prostate cancer progression. In summary, this project clarifies the role of androgens and changing cellular differentiation in prostate cancer by characterising the expression and function of the downstream genes encoding kallikrein-related serine proteases and Nodal. Furthermore, this study emphasises the similarities between prostate cancer and early development, and the crosstalk between developmental signalling pathways and the AR axis. The outcomes of this project also affirm the utility of the kallikrein locus as a model system to monitor tumour progression and the phenotype of prostate cancer cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)