985 resultados para prospective memory
Resumo:
In this study, for the first time, prospective memory was investigated in 11 school-aged children with autism spectrum disorders and 11 matched neurotypical controls. A computerised time-based prospective memory task was embedded in a visuospatial working memory test and required participants to remember to respond to certain target times. Controls had significantly more correct prospective memory responses than the autism spectrum group. Moreover, controls checked the time more often and increased time-monitoring more steeply as the target times approached. These differences in time-checking may suggest that prospective memory in autism spectrum disorders is affected by reduced self-initiated processing as indicated by reduced task monitoring.
Resumo:
Benefits and costs on prospective memory performance, of enactment at encoding and a semantic association between a cue-action word pair, were investigated in two experiments. Findings revealed superior performance for both younger and older adults following enactment, in contrast to verbal encoding, and when cue-action semantic relatedness was high. Although younger adults outperformed older adults, age did not moderate benefits of cue-action relatedness or enactment. Findings from a second experiment revealed that the inclusion of an instruction to perform a prospective memory task led to increments in response latency to items from the ongoing activity in which that task was embedded, relative to latencies when the ongoing task only was performed. However, this task interference ‘cost’ did not differ as a function of either cue-action relatedness or enactment. We argue that the high number of cue-action pairs employed here influenced meta-cognitive consciousness, hence determining attention allocation, in all experimental conditions.
Resumo:
This large-scale study examined the development of time-based prospective memory (PM) across childhood and the roles that working memory updating and time monitoring play in driving age effects in PM performance. One hundred and ninety-seven children aged 5 to 14 years completed a time-based PM task where working memory updating load was manipulated within individuals using a dual task design. Results revealed age-related increases in PM performance across childhood. Working memory updating load had a negative impact on PM performance and monitoring behavior in older children, but this effect was smaller in younger children. Moreover, the frequency as well as the pattern of time monitoring predicted children’s PM performance. Our interpretation of these results is that processes involved in children’s PM may show a qualitative shift over development from simple, nonstrategic monitoring behavior to more strategic monitoring based on internal temporal models that rely specifically on working memory updating resources. We discuss this interpretation with regard to possible trade-off effects in younger children as well as alternative accounts.
Resumo:
The present study investigated whether developmental changes in cognitive control may underlie improvements of time-based prospective memory. Five-, 7-, 9-, and 11-year-olds (N = 166) completed a driving simulation task (ongoing task) in which they had to refuel their vehicle at specific points in time (PM task). The availability of cognitive control resources was experimentally manipulated by imposing a secondary task that required divided attention. Children completed the driving simulation task both in a full attention condition and a divided attention condition where they had to carry out a secondary task. Results revealed that older children performed better than younger children on the ongoing task and PM task. Children performed worse on the ongoing and PM tasks in the divided attention condition compared to the full attention condition. With respect to time monitoring in the final interval prior to the PM target, divided attention interacted with age such that older children’s time monitoring was more negatively affected by the secondary task compared to younger children. Results are discussed in terms of developmental shifts from reactive to proactive monitoring strategies.
Resumo:
Prospective memory (PM) is a fundamental requirement for independent living which might be prematurely compromised in the neurodegenerative process, namely in mild cognitive impairment (MCI), a typical prodromal Alzheimer's disease (AD) phase. Most encoding manipulations that typically enhance learning in healthy adults are of minimal benefit to AD patients. However, there is some indication that these can display a recall advantage when encoding is accompanied by the physical enactment of the material. The aim of this study was to explore the potential benefits of enactment at encoding and cue-action relatedness on memory for intentions in MCI patients and healthy controls using a behavioral PM experimental paradigm. Method: We report findings examining the influence of enactment at encoding for PM performance in MCI patients and education-matched controls using a laboratory-based PM task with a factorial independent design. Results: PM performance was consistently superior when physical enactment was used at encoding and when target-action pairs were strongly associated. Importantly, these beneficial effects were cumulative and observable across both a healthy and a cognitively impaired lifespan as well as evident in the perceived subjective difficulty in performing the task. Conclusions: The identified beneficial effects of enacted encoding and semantic relatedness have unveiled the potential contribution of this encoding technique to optimize attentional demands through an adaptive allocation of resources strategies. We discuss our findings with respect to their potential impact on developing strategies to improve PM in AD sufferers.