929 resultados para prophenol oxidase
Resumo:
The cuticle of the silkworm Bombyx mori was demonstrated to contain pro-phenol oxidase [zymogen of phenol oxidase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1)] and its activating cascade. The activating cascade contained at least one serine proteinase zymogen (latent form of pro-phenol oxidase activating enzyme). When the extracted cascade components were incubated with Ca2+, the latent form of pro-phenol oxidase activating enzyme was itself activated and, in turn, converted through a limited proteolysis of pro-phenol oxidase to phenol oxidase. Immuno-gold localization of prophenol oxidase in the cuticle using a cross-reactive hemolymph anti-pro-phenol oxidase antibody revealed a random distribution of this enzyme in the nonlamellate endocuticle and a specific orderly arrayed pattern along the basal border of the laminae in the lamellate endocuticle of the body wall. Furthermore, prophenol oxidase was randomly distributed in the taenidial cushion of the tracheal cuticle. At the time of pro-phenol oxidase accumulation in the body wall cuticle, no pro-phenol oxidase mRNA could be detected in the epidermal tissue, whereas free-circulating hemocytes contained numerous transcripts of pro-phenol oxidase. Our results suggest that the pro-phenol oxidase is synthesized in the hemocytes and actively transported into the cuticle via the epidermis.
Resumo:
Immunostimulants are the substances, which enhance the non-specific defence mechanism and provide resistance against the invading pathogenic micro-organism. In order to increase the immunity of shrimps against the WSSV, the methanolic extracts of five different herbal medicinal plants like Cyanodon dactylon, Aegle marmelos, Tinospora cordifolia, Picrorhiza kurooa and Eclipta alba were selected and mixed thoroughly in equal proportion. The mixed extract was supplemented with various concentrations viz. 100 (A), 200 (B), 400 (C), and 800 (D) mg kg(-1) through artificial diets individually. The prepared diets (A-D) were fed individually to WSSV free healthy shrimp Penaeus monodon with an average weight of 8.0 +/- 0.5 g for 25 days. Control diet (E), devoid of herbal extract was also fed to shrimps simultaneously. After 25 days of feeding experiment, the shrimps were challenged with WSSV, which were isolated and propagated from the infected crustaceans. The shrimps succumbed to death within 7 days when fed on no herbal immunostimulant diet (E). Among the different concentrations of herbal immunostimulant supplemented diets, the shrimps fed on diet D (800 mg kg(-1)) significantly (P < 0.0001) had more survival (74%) and reduction in the viral load. Also the better performance of haematological, biochemical and immunological parameters was found in the immunostimulant incorporated diets fed shrimps. The present work revealed that the application of herbal immunostimulants will be effective against shrimp viral pathogenesis and they can be recommended for shrimp culture. (c) 2006 Published by Elsevier Ltd.
Resumo:
Background: Xanthine oxidase (XO) is a complex molybdeno-flavoprotein occurring with high activity in the milk fat globule membrane (MFGM) in all mammalian milk and is involved in the final stage of degradation of purine nucleotides. It catalyzes the sequential oxidation of hypoxanthine to xanthine and uric acid, accompanied by production of hydrogen peroxide and superoxide anion. Human saliva has been extensively described for its composition of proteins, electrolytes, cortisol, melatonin and some metabolites such as amino acids, but little is known about nucleotide metabolites. Method: Saliva was collected with swabs from babies; at full-term 1-4 days, 6-weeks, 6-months and 12-months. Unstimulated fasting (morning) saliva samples were collected directly from 77 adults. Breast milk was collected from 24 new mothers. Saliva was extracted from swabs and ultra-filtered. Nucleotide metabolites were analyzed by RP-HPLC with UV-photodiode array and ESI-MS/MS. XO activity was measured as peroxide production from hypoxanthine. Bacterial inhibition over time was assessed using CFU/mL or OD. Results: Median concentrations (μmol/L) of salivary nucleobases and nucleosides for neonates/6-weeks/6-months/12-months/adult respectively were: uracil 5.3/0.8/1.4/0.7/0.8, hypoxanthine 27/7.0/1.1/0.8/2.0, xanthine 19/7.0/2.0/2.0/2.0, adenosine 12/7.0/0.9/0.8/0.1, inosine 11/5.0/0.3/0.4/0.2, guanosine 7.0/6.0/0.5/0.4/0.1, uridine 12/0.8/0.3/0.9/0.4. Deoxynucleosides and dihydropyrimidines concentrations were essentially negligible. XO activity (Vmax:mean ± SD) in breast milk was 8.9 ± 6.2 μmol/min/L and endogenous peroxide was 27 ± 12 μmol/L; mixing breast milk with neonate saliva generated ~40 μmol/L peroxide,which inhibited Staphylococcus aureus. Conclusions: Salivary metabolites, particularly xanthine/hypoxanthine, are high in neonates, transitioning to low adult levels between 6-weeks to 6-months (p < 0.001). Peroxide occurs in breast milk and is boosted during suckling as an antibacterial system.
Resumo:
Abstract: Monoamine Oxidase (MAO) enzymes catabolise, and thus modulate abundance of, neurotransmitters in the brain. Variation in MAO enzyme activity has been linked to alcohol abuse behaviour, although the molecular mechanisms underlying this association are not understood. The present study evaluated relative gene-transcript abundance of MAO-A and MAO-B in the SH-SY5Y human neuroblastoma cell-line in response to ethanol exposure and following ethanol withdrawal. We found that each isoform of MAO was significantly transcriptionally up-regulated 55-80% in response to 100mM ethanol exposure. This trend was maintained following prolonged exposures (24 h-72 h) and with short exposures (24 h) followed by a period of ethanol withdrawal, suggesting that the transcriptional regulation is the result of a cellular change occurring within the first 24 hours of ethanol exposure. These results suggest a role for MAO transcriptional regulation in the complex neurobiochemical changes underlying alcohol addiction.
Resumo:
The catalytic action of putrescine specific amine oxidases acting in tandem with 4-aminobutyraldehyde dehydrogenase is explored as a degradative pathway in Rhodococcus opacus. By limiting the nitrogen source, increased catalytic activity was induced leading to a coordinated response in the oxidative deamination of putrescine to 4-aminobutyraldehyde and subsequent dehydrogenation to 4-aminobutyrate. Isolating the dehydrogenase by ion exchange chromatography and gel filtration revealed that the enzyme acts principally on linear aliphatic aldehydes possessing an amino moiety. Michaelis-Menten kinetic analysis delivered a Michaelis constant (KM=0.014mM) and maximum rate (Vmax=11.2μmol/min/mg) for the conversion of 4-aminobutyraldehyde to 4-aminobutyrate. The dehydrogenase identified by MALDI-TOF mass spectrometric analysis (E value=0.031, 23% coverage) belongs to a functionally related genomic cluster that includes the amine oxidase, suggesting their association in a directed cell response. Key regulatory, stress and transport encoding genes have been identified, along with candidate dehydrogenases and transaminases for the further conversion of 4-aminobutyrate to succinate. Genomic analysis has revealed highly similar metabolic gene clustering among members of Actinobacteria, providing insight into putrescine degradation notably among Micrococcaceae, Rhodococci and Corynebacterium by a pathway that was previously uncharacterised in bacteria.
Resumo:
While applications of amine oxidases are increasing, few have been characterised and our understanding of their biological role and strategies for bacteria exploitation are limited. By altering the nitrogen source (NH4Cl, putrescine and cadaverine (diamines) and butylamine (monoamine)) and concentration, we have identified a constitutive flavin dependent oxidase (EC 1.4.3.10) within Rhodococcus opacus. The activity of this oxidase can be increased by over two orders of magnitude in the presence of aliphatic diamines. In addition, the expression of a copper dependent diamine oxidase (EC 1.4.3.22) was observed at diamine concentrations>1mM or when cells were grown with butylamine, which acts to inhibit the flavin oxidase. A Michaelis-Menten kinetic treatment of the flavin oxidase delivered a Michaelis constant (KM)=190μM and maximum rate (kcat)=21.8s(-1) for the oxidative deamination of putrescine with a lower KM (=60μM) and comparable kcat (=18.2s(-1)) for the copper oxidase. MALDI-TOF and genomic analyses have indicated a metabolic clustering of functionally related genes. From a consideration of amine oxidase specificity and sequence homology, we propose a putrescine degradation pathway within Rhodococcus that utilises oxidases in tandem with subsequent dehydrogenase and transaminase enzymes. The implications of PUT homeostasis through the action of the two oxidases are discussed with respect to stressors, evolution and application in microbe-assisted phytoremediation or bio-augmentation.
Resumo:
L-Amino acid oxidases (LAAOs) are useful catalysts for the deracemisation of racemic amino acid sub-strates when combined with abiotic reductants. The gene nadB encoding the L-aspartate amino acid oxidase from Pseudomonas putida (PpLASPO) has been cloned and expressed in E. coli. The purified PpLASPO enzyme displayed a K M for l-aspartic acid of 2.26 mM and a k cat = 10.6 s −1 , with lower activity also displayed towards L-asparagine, for which pronounced substrate inhibition was also observed. The pH optimum of the enzyme was recorded at pH 7.4. The enzyme was stable for 60 min at up to 40 • C, but rapid losses in activity were observed at 50 • C. A mutational analysis of the enzyme, based on its sequence homology with the LASPO from E. coli of known structure, appeared to confirm roles in substrate binding or catalysis for residues His244, His351, Arg386 and Arg290 and also for Thr259 and Gln242. The high activity of the enzyme, and its promiscuous acceptance of both L-asparagine and L-glutamate as substrates, if with low activity, suggests that PpLASPO may provide a good model enzyme for evolution studies towards AAOs of altered or improved properties in the future.
Resumo:
The effects of oxygen availability and induction culture biomass upon production of an industrially important monoamine oxidase (MAO) were investigated in fed-batch cultures of a recombinant E. coli. For each induction cell biomass 2 different oxygenation methods were used, aeration and oxygen enriched air. Induction at higher biomass levels increased the culture demand for oxygen, leading to fermentative metabolism and accumulation of high levels of acetate in the aerated cultures. Paradoxically, despite an almost eight fold increase in acetate accumulation to levels widely reported to be highly detrimental to protein production, when induction wet cell weight (WCW) rose from 100% to 137.5%, MAO specific activity in these aerated processes showed a 3 fold increase. By contrast, for oxygenated cultures induced at WCW's 100% and 137.5% specific activity levels were broadly similar, but fell rapidly after the maxima were reached. Induction at high biomass levels (WCW 175%) led to very low levels of specific MAO activity relative to induction at lower WCW's in both aerated and oxygenated cultures. Oxygen enrichment of these cultures was a useful strategy for boosting specific growth rates, but did not have positive effects upon specific enzyme activity. Based upon our findings, consideration of the amino acid composition of MAO and previous studies on related enzymes, we propose that this effect is due to oxidative damage to the MAO enzyme itself during these highly aerobic processes. Thus, the optimal process for MAO production is aerated, not oxygenated, and induced at moderate cell density, and clearly represents a compromise between oxygen supply effects on specific growth rate/induction cell density, acetate accumulation, and high specific MAO activity. This work shows that the negative effects of oxygen previously reported in free enzyme preparations, are not limited to these acellular environments but are also discernible in the sheltered environment of the cytosol of E. coli cells.
Resumo:
By combining gene design and heterologous over-expression of Rhodotorula gracilis D-amino acid oxidase (RgDAO) in Pichia pastoris, enzyme production was enhanced by one order of magnitude compared to literature benchmarks, giving 350 kUnits/l of fed-batch bioreactor culture with a productivity of 3.1 kUnits/l h. P. pastoris cells permeabilized by freeze-drying and incubation in 2-propanol (10% v/v) produce a highly active (1.6 kUnits/g dry matter) and stable oxidase preparation. Critical bottlenecks in the development of an RgDAO catalyst for industrial applications have been eliminated.
Resumo:
Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.
Resumo:
The specific activity and content of cytochrome oxidase in the rough endoplasmic reticulum--mitochondrion complex are higher than in the mitochondrial fraction. Radiolabelling studies with the use of hepatocytes and isolated microsomal and rough endoplasmic reticulum--mitochondrion fractions, followed by immunoprecipitation with anti-(cytochrome oxidase) antibody, reveal that the nuclear-coded cytoplasmic subunits of cytochrome oxidase are preferentially synthesized in the latter fraction. The results have a bearing on the mechanism of transport of these subunits into mitochondria.
Resumo:
Two genes encoding polyphenol oxidase (PPO) were isolated from pineapple (Ananas comosus[L.] Merr. cv. Smooth Cayenne). Sequence analyses showed that both contained a single intron and encoded typical chloroplast-localized PPO proteins, the sequences of which corresponded to two pineapple PPO cDNAs, PINPPO1 and PINPPO2, recently described by Stewart et al. (2001). Southern blot analyses suggested that pineapple contained only two PPO genes. Analysis of expression of PINPPO1 promoter GUS fusion constructs showed this promoter had a low basal activity and was cold- and wound-inducible, consistent with known mRNA expression profiles. Striking homologies to gibberellin response complexes (GARC) were observed in sequences of both the PINPPO1 and PINPPO2 promoters. Transient assays in mature pineapple fruit and stable expression in transgenic tobacco showed that PINPPO1 promoter-GUS fusions were indeed gibberellin (GA) responsive. A role for the element within the putative GARCs in mediating GA-responsiveness of the PINPPO1 promoter was confirmed by mutational analysis. PINPPO2 was also shown to be GA-responsive by RT-PCR analysis. Mutant PINPPO1 promoter-GUS fusion constructs, which were no longer GA-inducible, showed a delayed response to cold induction in pineapple fruit in transient assays, suggesting a role for GA in blackheart development. This was supported by observations that exogenous GA3 treatment induced blackheart in the absence of chilling. Sequences showing homology to GARCs are also present in some PPO promoters in tomato, suggesting that GA regulates PPO expression in diverse species.
Resumo:
Oxygen Consumption by alternative oxidase (AOX), present in mitochondria of many angiosperms, is known to be cyanide-resistant in contrast to cytochrome oxidase. Its activity in potato tuber (Solarium tuberosum L.) was induced following chilling treatment at 4 degrees C.About half of the total O-2 consumption of succinate oxidation in such mitochondria was found to be sensitive to SHAM, a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive oxygen consumption by nearly half, and addition at the end of the reaction released nearly half of the consumed oxygen by AOX, both typical of catalase action on H2O2. These findings with catalase suggest that the product of reduction of AOX is H2O2 and not H2O, as previously Surmised. In potatoes Subjected to chill stress (4 degrees C) for periods of 3, 5 and >= 8 days the activity of AOX in mitochondria increased progressively with a corresponding increase in the AOX protein detected by immunoblot of the protein.
Resumo:
From a study of 3 large half-sib families of cattle, we describe linkage between DNA polymorphisms on bovine chromosome 7 and meat tenderness. Quantitative trait loci (QTL) for Longissimus lumborum peak force (LLPF) and Semitendonosis adhesion (STADH) were located to this map of DNA markers, which includes the calpastatin ( CAST) and lysyl oxidase (LOX) genes. The LLPF QTL has a maximum lodscore of 4.9 and allele substitution of approximately 0.80 of a phenotypic standard deviation, and the peak is located over the CAST gene. The STADH QTL has a maximum lodscore of 3.5 and an allele substitution of approximately 0.37 of a phenotypic standard deviation, and the peak is located over the LOX gene. This suggests 2 separate likelihood peaks on the chromosome. Further analyses of meat tenderness measures in the Longissimus lumborum, LLPF and LL compression (LLC), in which outlier individuals or kill groups are removed, demonstrate large shifts in the location of LLPF QTL, as well as confirming that there are indeed 2 QTL on bovine chromosome 7. We found that both QTL are reflected in both LLPF and LLC measurements, suggesting that both these components of tenderness, myofibrillar and connective tissue, are detected by both measurements in this muscle.