934 resultados para proliferative kidney disease
Resumo:
Salmonid proliferative kidney disease (PKD) is caused by the myxozoan Tetracapsuloides bryosalmonae. Given the serious and apparently growing impact of PKD on farmed and wild salmonids, we undertook a phylogeographic study to gain insights into the history of genealogical lineages of T. bryosalmonae in Europe and North America, and to determine if the global expansion of rainbow trout farming has spread the disease. Phylogenetic analyses of internal transcribed spacer 1 sequences revealed a clade composed of all North American sequences plus a subset of Italian and French sequences. High genetic diversity in North America and the absence of genotypes diagnostic of the North American clade in the rest of Europe imply that southern Europe was colonized by immigration from North America; however, sequence divergence suggests that this colonization substantially pre-dated fisheries activities. Furthermore, the lack of southern European lineages in the rest of Europe, despite widespread rainbow trout farming, indicates that T. bryosalmonae is not transported through fisheries activities. This result strikingly contrasts with the commonness of fisheries-related introductions of other pathogens and parasites and indicates that fishes may be dead-end hosts. Our results also demonstrate that European strains of T. bryosalmonae infect and induce PKD in rainbow trout introduced to Europe.
Resumo:
Laboratory-reared colonies of the bryozoans Fredericella sultana and Plumatella fungosa were placed upstream of 2 fish farms endemic for salmonid proliferative kidney disease (PKD) to assess rates of infection of bryozoans by Tetra caps uloides bryosalmonae, the causative agent of PKD. Colonies were deployed in the field for 8 trial periods of 2 wk each throughout the summer of 2001. Following each trial, bryozoan colonies were maintained in laboratory culture for 28 d and were regularly monitored for infection by searching for sac stages of T bryosalmonae. Infections were never identified by observations of sac stages, however positive PCR results and sequencing of cultured material confirmed that cryptic infections were present in colonies of both species deployed at one site. The possibility that PCR results reflected contamination of surfaces of bryozoans can be excluded, given the short period of spore viability of T bryosalmonae. Highest rates of infection occurred when 4 of 23 colonies of F sultana and 1 of 12 colonies of P. fungosa were infected during the period 10 to 24 July. No infections were detected from mid-August to late October at this site. None of the colonies at the other site became infected throughout the period of study. Our data provide the first estimates of infection rates of bryozoans by T bryosalmonae. Additionally, they provide evidence that a cryptic stage can be maintained within bryozoan hosts for a period of 4 to 6 wk.
Resumo:
P>1. Proliferative kidney disease (PKD) is a disease of salmonid fish caused by the endoparasitic myxozoan, Tetracapsuloides bryosalmonae, which uses freshwater bryozoans as primary hosts. Clinical PKD is characterised by a temperature-dependent proliferative and inflammatory response to parasite stages in the kidney.;2. Evidence that PKD is an emerging disease includes outbreaks in new regions, declines in Swiss brown trout populations and the adoption of expensive practices by fish farms to reduce heavy losses. Disease-related mortality in wild fish populations is almost certainly underestimated because of e.g. oversight, scavenging by wild animals, misdiagnosis and fish stocking.;3. PKD prevalences are spatially and temporally variable, range from 0 to 90-100% and are typically highest in juvenile fish.;4. Laboratory and field studies demonstrate that (i) increasing temperatures enhance disease prevalence, severity and distribution and PKD-related mortality; (ii) eutrophication may promote outbreaks. Both bryozoans and T. bryosalmonae stages in bryozoans undergo temperature- and nutrient-driven proliferation.;5. Tetracapsuloides bryosalmonae is likely to achieve persistent infection of highly clonal bryozoan hosts through vertical transmission, low virulence and host condition-dependent cycling between covert and overt infections. Exploitation of fish hosts entails massive proliferation and spore production by stages that escape the immune response. Many aspects of the parasite's life cycle remain obscure. If infectious stages are produced in all hosts then the complex life cycle includes multiple transmission routes.;6. Patterns of disease outbreaks suggest that background, subclinical infections exist under normal environmental conditions. When conditions change, outbreaks may then occur in regions where infection was hitherto unsuspected.;7. Environmental change is likely to cause PKD outbreaks in more northerly regions as warmer temperatures promote disease development, enhance bryozoan biomass and increase spore production, but may also reduce the geographical range of this unique multihost-parasite system. Coevolutionary dynamics resulting from host-parasite interactions that maximise fitness in previous environments may pose problems for sustainability, particularly in view of extensive declines in salmonid populations and degradation of many freshwater habitats.
Resumo:
Proliferative kidney disease (PKD) of salmonids, caused by Tetracapsuloides bryosalmonae, can lead to high mortalities at elevated water temperature. We evaluated the hypothesis that this mortality is caused by increasing parasite intensity. T. bryosalmonae-infected rainbow trout (Oncorhynchus mykiss) were reared at different water temperatures and changes in parasite concentrations in the kidney were compared to cumulative mortalities. Results of parasite quantification by a newly developed real-time PCR agreed with the number of parasites detected by immunohistochemistry, except for very low or very high parasite loads because of heterogenous distribution of the parasites in the kidney. Two experiments were performed, where fish were exposed to temperatures of 12, 14, 16, 18 or 19 degrees C after an initial exposure to an infectious environment at 12-16 degrees C resulting in 100% prevalence of infected fish after 5 to 14 days of exposure. While mortalities differed significantly between all investigated water temperatures, significant differences in final parasite loads were only found between fish kept at 12 degrees C and all other groups. Differences in parasite load between fish kept at 14 degrees C to 19 degrees C were not significant. These findings provide evidence that there is no direct link between parasite intensity and fish mortality.
Resumo:
Proliferative kidney disease is a parasitic infection of salmonid fishes caused by Tetracapsuloides bryosalmonae. The main target organ of the parasite in the fish is the kidney. To investigate the influence of water temperature on the disease in fish, rainbow trout Oncorhynchus mykiss infected with T bryosalmonae were kept at 12 degrees C and 18 degrees C. The number of parasites, the type and degree of lesions in the kidney and the mortality rate was evaluated from infection until full development of disease. While mortality stayed low at 12 degrees C, it reached 77% at 18 degrees C. At 12 degrees C, pathological lesions were dominated by a multifocal proliferative and granulomatous interstitial nephritis. This was accompanied by low numbers of T. bryosalmonae, mainly located in the interstitial lesions. With progression of the disease, small numbers of parasites appeared in the excretory tubuli, and parasite DNA was detected in the urine. Parasite degeneration in the interstitium was observed at late stages of the disease. At 18 degrees C, pathological lesions in kidneys were more severe and more widely distributed, and accompanied by significantly higher parasite numbers. Distribution of parasites in the renal compartments, onset of parasite degeneration and time course of appearance of parasite DNA in urine were not clearly different from the 12 degrees C group. These findings indicate that higher mortality at 18 degrees C compared to 12 degrees C is associated with an enhanced severity of renal pathology and increased parasite numbers.
Resumo:
Proliferative kidney disease (PKD) is a temperature-dependent disease caused by the myxozoan Tetracapsuloides bryosalmonae. It is an emerging threat to wild brown trout Salmo trutta fario populations in Switzerland. Here we examined (1) how PKD prevalence and pathology in young-of-the-year (YOY) brown trout relate to water temperature, (2) whether wild brown trout can completely recover from T. bryosalmonae-induced renal lesions and eliminate T. bryo - salmonae over the winter months, and (3) whether this rate and/or extent of the recovery is influenced by concurrent infection. A longitudinal field study on a wild brown trout cohort was conducted over 16 mo. YOY and age 1+ fish were sampled from 7 different field sites with various temperature regimes, and monitored for infection with T. bryosalmonae and the nematode Raphidascaris acus. T. bryosamonae was detectable in brown trout YOY from all sampling sites, with similar renal pathology, independent of water temperature. During winter months, recovery was mainly influenced by the presence or absence of concurrent infection with R. acus larvae. While brown trout without R. acus regenerated completely, concurrently infected brown trout showed incomplete recovery, with chronic renal lesions and incomplete translocation of T. bryosalmonae from the renal interstitium into the tubular lumen. Water temperature seemed to influence complete excretion of T. bryosalmonae, with spores remaining in trout from summer-warm rivers, but absent in trout from summer-cool rivers. In the following summer months, we found PKD infections in 1+ brown trout from all investigated river sites. The pathological lesions indicated a reinfection rather than a proliferation of remaining T. bryosalmonae. However, disease prevalence in 1+ trout was lower than in YOY.
Resumo:
Proliferative kidney disease (PKD) is an emerging disease threatening wild salmonid populations. In temperature-controlled aquaria, PKD can cause mortality rates of up to 85% in rainbow trout. So far, no data about PKD-related mortality in wild brown trout Salmo trutta fario are available. The aim of this study was to investigate mortality rates and pathology in brown trout kept in a cage within a natural river habitat known to harbor Tetracapsuloides bryosalmonae. Young-of-the-year (YOY) brown trout, free of T. bryosalmonae, were exposed in the River Wutach, in the northeast of Switzerland, during 3 summer months. Samples of wild brown trout caught by electrofishing near the cage location were examined in parallel. The incidence of PKD in cage-exposed animals (69%) was not significantly different to the disease prevalence of wild fish (82 and 80% in the upstream and downstream locations, respectively). The mortality in cageexposed animals, however, was as low as 15%. At the termination of the exposure experiment, surviving fish showed histological lesions typical for PKD regression, suggesting that many YOY brown trout survive the initial infection. Our results at the River Wutach suggest that PKD in brown trout does not always result in high mortality under natural conditions.
Resumo:
Different routes for the administration of bone marrow-derived cells (BMDC) have been proposed to treat the progression of chronic renal failure (CRF). We investigated whether (1) the use of bovine pericardium (BP) as a scaffold for cell therapy would retard the progression of CAF and (2) the efficacy of cell therapy differently impacts distinct degrees of CRF. We used 2/3 and 5/6 models of renal mass reduction to simulate different stages of chronicity. Treatments consisted of BP seeded with either mesenchymal or mononuclear cells implanted in the parenchyma of remnant kidney. Renal function and proteinuria were measured at days 45 and 90 after cell implantation. BMDC treatment reduced glomerulosclerosis, interstitial fibrosis and lymphocytic infiltration. Immunohistochemistry showed decreased macrophage accumulation, proliferative activity and the expression of fibronectin and alpha-smooth muscle-actin. Our results demonstrate: (1) biomaterial combined with BMDC did retard the progression of experimental CRF; (2) cellular therapy stabilized serum creatinine (sCr), improved creatinine clearance and 1/sCr slope when administered during the less severe stages of CRF; (3) treatment with combined therapy decreased glomerulosclerosis, fibrosis and the expression of fibrogenic molecules; and (4) biomaterials seeded with BMDC can be an alternative route of cellular therapy.
Resumo:
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human life-threatening monogenic disorders. The disease is characterized by bilateral, progressive renal cystogenesis and cyst and kidney enlargement, often leading to end-stage renal disease, and may include extrarenal manifestations. ADPKD is caused by mutation in one of two genes, PKD1 and PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC2 is a non-selective cation channel permeable to Ca2+, while PC1 is thought to function as a membrane receptor. The cyst cell phenotype includes increased proliferation and apoptosis, dedifferentiation, defective planar polarity, and a secretory pattern associated with extracellular matrix remodeling. The two-hit model for cyst formation has been recently extended by the demonstration that early gene inactivation leads to rapid and diffuse development of renal cysts, while inactivation in adult life is followed by focal and late cyst formation. Renal ischemia/reperfusion, however, can function as a third hit, triggering rapid cyst development in kidneys with Pkd1 inactivation induced in adult life. The PC1-PC2 complex behaves as a sensor in the primary cilium, mediating signal transduction via Ca2+ signaling. The intracellular Ca2+ homeostasis is impaired in ADPKD, being apparently responsible for the cAMP accumulation and abnormal cell proliferative response to cAMP. Activated mammalian target for rapamycin (mTOR) and cell cycle dysregulation are also significant features of PKD. Based on the identification of pathways altered in PKD, a large number of preclinical studies have been performed and are underway, providing a basis for clinical trials in ADPKD and helping the design of future trials.
Resumo:
Background and objectives Low bone mineral density and coronary artery calcification (CAC) are highly prevalent among chronic kidney disease (CKD) patients, and both conditions are strongly associated with higher mortality. The study presented here aimed to investigate whether reduced vertebral bone density (VBD) was associated with the presence of CAC in the earlier stages of CKD. Design, setting, participants, & measurements Seventy-two nondialyzed CKD patients (age 52 +/- 11.7 years, 70% male, 42% diabetics, creatinine clearance 40.4 +/- 18.2 ml/min per 1.73 m(2)) were studied. VBD and CAC were quantified by computed tomography. Results CAC > 10 Agatston units (AU) was observed in 50% of the patients (median 120 AU [interquartile range 32 to 584 AU]), and a calcification score >= 400 AU was found in 19% (736 [527 to 1012] AU). VBD (190 +/- 52 Hounsfield units) correlated inversely with age (r = -0.41, P < 0.001) and calcium score (r = -0.31, P = 0.01), and no correlation was found with gender, creatinine clearance, proteinuria, lipid profile, mineral parameters, body mass index, and diabetes. Patients in the lowest tertile of VBD had expressively increased calcium score in comparison to the middle and highest tertile groups. In the multiple logistic regression analysis adjusting for confounding variables, low VBD was independently associated with the presence of CAC. Conclusions Low VBD was associated with CAC in nondialyzed CKD patients. The authors suggest that low VBD might constitute another nontraditional risk factor for cardiovascular disease in CKD. Clin J Am Soc Nephrol 6: 1456-1462, 2011. doi: 10.2215/CJN.10061110
Resumo:
Pneumococcal vaccination has been recommended for immunocompromised children, including patients with chronic kidney disease. We determined pneumococcal immunoglobulin (Ig) G antibodies to serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F before and after 48 pediatric patients with chronic renal failure were administered heptavalent conjugated pneumococcal vaccine. The patients were between 1 and 9 years of age and were separated into a conservative treatment group (Group 1) and a dialysis group Group 2). The antibody response to the vaccinal serotypes was evaluated by measuring antibody concentrations before the first dose and 60 days after the second one. Pre-vaccinal IgG concentrations >= 0.35 mu g/ml were detected for all serotypes in at least 50% of the patients in both groups. Patients from both groups showed a statistically indistinguishable behavior in terms of the medians of post-vaccination IgG levels. An ""adequate"" vaccine response was defined as a post-immunization level of specific pneumococcal serotype antibody >= 0.35 mu g/ml, based on the World Health Organization`s (WHO) protective antibody concentration definition for pneumococcal conjugate vaccines, or on a fourfold increase over baseline for at least five of the seven antigens of the vaccine. An ""adequate"" vaccinal response was obtained in 100% of the patients of both groups using WHO`s definition, or in 45.8% of Group 1 patients and 37.5% of Group 2 patients when the criterion was a fourfold antibody increase over baseline antibody concentrations.
Resumo:
Introduction. We sought to evaluate 2 sing] e-nucleotide polymorphisms (SNPs) in the C-reactive protein (CRP) gene promoter region for their effects on CRP levels in chronic kidney disease (CKD) patients before and after a successful kidney transplantation. Methods. Fifty CKD patients were evaluated before and at the first and second years after the graft. Two SNPs were studied, a bi-allelic (G -> A) at the -409 and a tri-allelic (C -> T -> A) variation at the -390 position in the CRP gene. Results. All patients presented the -409GG genotype. At the -390 position, the ""A"" allele was not found; there were 15 ""CC"" patients, 11 ""TT"" patients, and 24 ""CT"" patients. CRP levels were different among patients with various genotypes (P < .019). Also the presence of the allele ""T"" was sufficient to determine differences in CRP levels both in pretransplantation (P = .045) and at 1 year posttransplantation (P = .011), but not at the second year (P = .448). Conclusion. SNPs at the -390 position of the CRP gene promoter region influence CRP basal levels in such a way that the ""C"" allele correlated with the lowest and the ""T"" with the highest. We did not observe this influence in our patients at the second year posttransplantation.
Resumo:
Background. Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic nephropathies, affecting one in every 800-1000 individuals in the worldwide general population and 5-10% of hemodialysis patients. Little data concerning the prevalence of ADPKD in Brazil are available. Thus, the aim of the present study was to investigate both the frequency and clinical profile of ADPKD among hemodialysis patients in south of Brazil. Methods. This cross-sectional study consisted of patients from 24 hemodialysis centers. Patients were screened for ADPKD by clinical, laboratorial, and image examination in medical records. Results. Of 1326 patients on hemodialysis in the south of Brazil that composed this study, 99 (7.5%) had polycystic kidney as primary cause for chronic renal failure. Comparisons between ADPKD and non-ADPKD patients revealed no differences regarding mean age, gender, and ethnicity. Conclusions. Our data revealed that ADPKD is prevalent among patients on hemodialysis in the south of Brazil. In addition, the clinical profile of ADPKD is similar to reported data from North America and Europe, putatively due to the similar ethnic composition mainly based on European descents.