826 resultados para process data
Resumo:
Most approaches to business process compliance are restricted to the analysis of the structure of processes. It has been argued that full regulatory compliance requires information on not only the structure of processes but also on what the tasks in a process do. To this end Governatori and Sadiq[2007] proposed to extend business processes with semantic annotations. We propose a methodology to automatically extract one kind of such annotations; in particular the annotations related to the data schema and templates linked to the various tasks in a business process.
Resumo:
This accessible, practice-oriented and compact text provides a hands-on introduction to the principles of market research. Using the market research process as a framework, the authors explain how to collect and describe the necessary data and present the most important and frequently used quantitative analysis techniques, such as ANOVA, regression analysis, factor analysis, and cluster analysis. An explanation is provided of the theoretical choices a market researcher has to make with regard to each technique, as well as how these are translated into actions in IBM SPSS Statistics. This includes a discussion of what the outputs mean and how they should be interpreted from a market research perspective. Each chapter concludes with a case study that illustrates the process based on real-world data. A comprehensive web appendix includes additional analysis techniques, datasets, video files and case studies. Several mobile tags in the text allow readers to quickly browse related web content using a mobile device.
Resumo:
As network capacity has increased over the past decade, individuals and organisations have found it increasingly appealing to make use of remote services in the form of service-oriented architectures and cloud computing services. Data processed by remote services, however, is no longer under the direct control of the individual or organisation that provided the data, leaving data owners at risk of data theft or misuse. This paper describes a model by which data owners can control the distribution and use of their data throughout a dynamic coalition of service providers using digital rights management technology. Our model allows a data owner to establish the trustworthiness of every member of a coalition employed to process data, and to communicate a machine-enforceable usage policy to every such member.
Resumo:
Advances in data mining have provided techniques for automatically discovering underlying knowledge and extracting useful information from large volumes of data. Data mining offers tools for quick discovery of relationships, patterns and knowledge in large complex databases. Application of data mining to manufacturing is relatively limited mainly because of complexity of manufacturing data. Growing self organizing map (GSOM) algorithm has been proven to be an efficient algorithm to analyze unsupervised DNA data. However, it produced unsatisfactory clustering when used on some large manufacturing data. In this paper a data mining methodology has been proposed using a GSOM tool which was developed using a modified GSOM algorithm. The proposed method is used to generate clusters for good and faulty products from a manufacturing dataset. The clustering quality (CQ) measure proposed in the paper is used to evaluate the performance of the cluster maps. The paper also proposed an automatic identification of variables to find the most probable causative factor(s) that discriminate between good and faulty product by quickly examining the historical manufacturing data. The proposed method offers the manufacturers to smoothen the production flow and improve the quality of the products. Simulation results on small and large manufacturing data show the effectiveness of the proposed method.
Resumo:
This paper proposes a technique that supports process participants in making risk-informed decisions, with the aim to reduce the process risks. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we prompt the participant with the expected risk that a given fault will occur given the particular input. These risks are predicted by traversing decision trees generated from the logs of past process executions and considering process data, involved resources, task durations and contextual information like task frequencies. The approach has been implemented in the YAWL system and its effectiveness evaluated. The results show that the process instances executed in the tests complete with substantially fewer faults and with lower fault severities, when taking into account the recommendations provided by our technique.
Resumo:
Purpose – Context-awareness has emerged as an important principle in the design of flexible business processes. The goal of the research is to develop an approach to extend context-aware business process modeling toward location-awareness. The purpose of this paper is to identify and conceptualize location-dependencies in process modeling. Design/methodology/approach – This paper uses a pattern-based approach to identify location-dependency in process models. The authors design specifications for these patterns. The authors present illustrative examples and evaluate the identified patterns through a literature review of published process cases. Findings – This paper introduces location-awareness as a new perspective to extend context-awareness in BPM research, by introducing relevant location concepts such as location-awareness and location-dependencies. The authors identify five basic location-dependent control-flow patterns that can be captured in process models. And the authors identify location-dependencies in several existing case studies of business processes. Research limitations/implications – The authors focus exclusively on the control-flow perspective of process models. Further work needs to extend the research to address location-dependencies in process data or resources. Further empirical work is needed to explore determinants and consequences of the modeling of location-dependencies. Originality/value – As existing literature mostly focusses on the broad context of business process, location in process modeling still is treated as “second class citizen” in theory and in practice. This paper discusses the vital role of location-dependencies within business processes. The proposed five basic location-dependent control-flow patterns are novel and useful to explain location-dependency in business process models. They provide a conceptual basis for further exploration of location-awareness in the management of business processes.
Resumo:
This paper proposes a recommendation system that supports process participants in taking risk-informed decisions, with the goal of reducing risks that may arise during process execution. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a business process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we suggest to the participant the action to perform which minimizes the predicted process risk. Risks are predicted by traversing decision trees generated from the logs of past process executions, which consider process data, involved resources, task durations and other information elements like task frequencies. When applied in the context of multiple process instances running concurrently, a second technique is employed that uses integer linear programming to compute the optimal assignment of resources to tasks to be performed, in order to deal with the interplay between risks relative to different instances. The recommendation system has been implemented as a set of components on top of the YAWL BPM system and its effectiveness has been evaluated using a real-life scenario, in collaboration with risk analysts of a large insurance company. The results, based on a simulation of the real-life scenario and its comparison with the event data provided by the company, show that the process instances executed concurrently complete with significantly fewer faults and with lower fault severities, when the recommendations provided by our recommendation system are taken into account.
Resumo:
In order to improve and continuously develop the quality of pharmaceutical products, the process analytical technology (PAT) framework has been adopted by the US Food and Drug Administration. One of the aims of PAT is to identify critical process parameters and their effect on the quality of the final product. Real time analysis of the process data enables better control of the processes to obtain a high quality product. The main purpose of this work was to monitor crucial pharmaceutical unit operations (from blending to coating) and to examine the effect of processing on solid-state transformations and physical properties. The tools used were near-infrared (NIR) and Raman spectroscopy combined with multivariate data analysis, as well as X-ray powder diffraction (XRPD) and terahertz pulsed imaging (TPI). To detect process-induced transformations in active pharmaceutical ingredients (APIs), samples were taken after blending, granulation, extrusion, spheronisation, and drying. These samples were monitored by XRPD, Raman, and NIR spectroscopy showing hydrate formation in the case of theophylline and nitrofurantoin. For erythromycin dihydrate formation of the isomorphic dehydrate was critical. Thus, the main focus was on the drying process. NIR spectroscopy was applied in-line during a fluid-bed drying process. Multivariate data analysis (principal component analysis) enabled detection of the dehydrate formation at temperatures above 45°C. Furthermore, a small-scale rotating plate device was tested to provide an insight into film coating. The process was monitored using NIR spectroscopy. A calibration model, using partial least squares regression, was set up and applied to data obtained by in-line NIR measurements of a coating drum process. The predicted coating thickness agreed with the measured coating thickness. For investigating the quality of film coatings TPI was used to create a 3-D image of a coated tablet. With this technique it was possible to determine coating layer thickness, distribution, reproducibility, and uniformity. In addition, it was possible to localise defects of either the coating or the tablet. It can be concluded from this work that the applied techniques increased the understanding of physico-chemical properties of drugs and drug products during and after processing. They additionally provided useful information to improve and verify the quality of pharmaceutical dosage forms