993 resultados para prismatic slip


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg-Zn binary alloys with concentrations between 0 and 2.8wt% Zn have been prepared and processed via hot rolling and annealing to produce specimens with a strong basal texture and a range of grain sizes. These have been deformed in tension, a condition in which the deformation is dominated by prismatic slip. This data has been used to assess the Hall-Petch parameter as a function of Zn concentration for deformation dominated by prismatic slip. Pure magnesium showed non-linear Hall-Petch behaviour at large grain sizes, and this is compared to the values for prismatic slip measured on single crystals. The differences between critical resolved shear stress measurements made through single crystal, polycrystal and mathematical modelling techniques are also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The activation of slip and twinning deformation modes in Mg-3Al-1Zn alloy was investigated by means of both in-situ and ex-situ methods at ambient temperature using electron back scattering diffraction (EBSD). The results confirm the importance of non-basal slip and c-axis compression double twinning. During tensile deformation of rolled sheet, 63% of the observed slip traces were ascribed to prismatic slip, 33% to basal slip and 4% to <c+a> slip. Prismatic slip was frequently observed in grain interiors. The density of twinning was quantified in samples tested along transverse, extrusion and rolling directions at failure. The values in the range of 0.02-0.18 twins per square micron were found depending on sample orientation. The results show the effect of twinning on failure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The grain size dependence of the yield stress in hot rolled 99.87 pct magnesium sheets and rods was measured in the temperature range 77 K to 420 K. Hot rolling produced strong basal textures and, for a given grain size, the hot rolled material has a higher strength than extruded material. The yield strength-grain size relation in the above temperature range follows the Hall-Petch equation, and the temperature dependencies of the Hall-Petch constants σ0 and k are in support of the theory of Armstrong for hcp metals that the intercept σ0 is related to the critical resolved shear stress (CRSS) for basal slip (easy slip) and the slope k is related to the CRSS for prismatic slip (difficult slip) occurring near the grain boundaries. In the hot rolled magnesium, σ0 is larger and k is smaller than in extruded material, observations which are shown to result from strong unfavorable basal and favorable 1010 textures, respectively. Texture affects the Hall-Petch constants through its effect on the orientation factors relating them to the CRSS for the individual slip systems controlling them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we demonstrate a way to impart severe plastic deformation to magnesium at room temperature to produce ultrafine grain size of similar to 250 nm through equal channel angular extrusion (ECAE). The strategy to deform magnesium at lower temperature or to achieve such grain sizes has been proposed as: (i) to obtain a suitable initial orientation with high Schmid factor for basal slip and low Schmid factor for pyramidal/prismatic slip; (ii) to take advantage of low stacking fault energy of basal and high stacking fault energies of prismatic/pyramidal planes in order to relatively work-harden the basal plane with respect to the pyramidal/prismatic plane; and (iii) to lower the temperature of deformation in steps, leading to continual refinement of grains, resulting in finer grain size. The experimental as well as simulated texture of ECAE-processed samples indicate that the deformation mechanism leading to ultrafine grain size is slip-dominated. The recrystallization mechanism during ECAE has been found to be orientation-dependent. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the fracture behavior of magnesium single crystals is studied by conducting experiments with notched three point bend specimens of three crystallographic orientations. In the first and second orientations, the c-axis is along the normal to the flat surface of the notch, while in the third it is aligned with the notch front. For all the orientations, in situ electron back scattered diffraction observations made around the notch root show profuse tensile twinning of {10 (1) over bar2} type. Further, in the first two orientations basal and prismatic slip traces are identified from optical metallography. The width of the most prominent twin saturates at around 120-150 mu m, while twins continue to nucleate farther away to accommodate plastic deformation. In all the orientations, crack initiation occurs before the attainment of peak load and the crack grows stably along twin-matrix interface before deflecting at twin-twin intersections. Results show that profuse tensile twinning is an important energy dissipating mechanism that enhances the fracture toughness. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of hot working flow stress with strain is examined in torsion, uniaxial compression and channel die compression. The flow stress was found to be strongly dependent on texture and deformation mode. At low strains this dependency accounted for a difference in flow stress of up to a factor of two. At higher strains the influence of texture and deformation mode was less marked. The stresses corresponding to an equivalent strain of 0.5 were modelled using a power law expression with an activation energy of 147 kJ/mol and a strain rate exponent of 0.15. The influence of texture and deformation mode on flow stress is rationalised in terms of the influence of prismatic slip, twinning and dynamic recrystallisation on deformation stress and structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of hot-compression tests and Taylor-model simulations were carried out with the intention of developing a simple expression for the proof stress of magnesium alloy AZ31 during hot working. A crude approximation of wrought textures as a mixture of a single ideal texture component and a random background was employed. The shears carried by each deformation system were calculated using a full-constraint Taylor model for a selection of ideal orientations as well as for random textures. These shears, in combination with the measured proof stresses, were employed to estimate the critical resolved shear stresses for basal slip, prismatic slip, ⟨c+a⟩ second-order pyramidal slip, and { } twinning. The model thus established provides a semianalytical estimation of the proof stress (a one-off Taylor simulation is required) and also indicates whether or not twinning is expected. The approach is valid for temperatures between ∼150 °C and ∼450 °C, depending on the texture, strain rate, and strain path.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wrought magnesium alloys exhibit poor cold formability and the accepted explanation is the shortage of independent slip systems. In order to improve the formability in these alloys, an understanding of the deformation modes is required. In the present work, activation of different slip and twinning systems are investigated in rolled Mg–3Al–1Zn using electron back scattering diffraction. Analysis was performed on deformed surfaces and on metallographically prepared cross-sections following deformation at room temperature. The results reinforce the importance of prismatic slip and c-axis compression double twinning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A semianalytical Sachs-type equation for the flow stress of magnesium-base alloys is developed using the Schmid law, power law hardening, and a sigmoidal increase in the twinning volume fraction with strain. Average Schmid factors were estimated from electron backscattered diffraction (EBSD) data. With these, the equation provides a reasonable description of the flow curves obtained in compression and tension for samples of Mg-3Al-1Zn cut in different orientations from rolled plate. The model illustrates the general importance of basal slip and twinning in magnesium alloys. The significance of prismatic slip in room temperature tension testing is also highlighted. This is supported with EBSD slip line trace analysis and rationalized in terms of a possible sensitivity of the critical resolved shear stress for prismatic (cross) slip to the stress on the basal plane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deformation behaviour of the age hardenable alloy Mg–5%Zn after different precipitation treatments has been examined. It has been found that during compressive deformation, fine particles increase the number of twins that form, but reduce the size and total volume fraction of twins. Visco-plastic selfconsistent modelling has been used to show that the presence of precipitates hardens the twin and prismatic slip systems more than the basal slip system. It is proposed that because the {10 ¯12} twin requires basal slip to accommodate the twinning shear, this twin type will always be hardened equal to, or more than, the basal slip system in response to precipitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deformation behaviour of two single phase binary alloys, Mg-5Y and Mg-10Y, have been examined. In compression, two twin types were observed, the common {101¯2} twin as well as the less common {112¯1} extension twin. It is shown that the {112¯1} twin is much less sensitive to solute concentration than the {101¯2} twin, and it is suggested that the simple atomic shuffle of the {112¯1} twin reduces the solute strengthening imparted by Y additions. The common {101¯2} twin showed significant hardening as a result of alloying with Y. An analysis of solute behaviour has indicated that of the four chemical parameters investigated, i.e. atomic size, shear modulus, electronegativity and solute distribution, it appears to be the larger atomic radius of Y compared to Mg that increases the stress required to activate the {101¯2} twin. It is suggested that the large atomic radius inhibits the atomic shuffling process which accompanies the twinning shear in this twin type.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In situ neutron diffraction of two binary Mg alloys, Mg-0.5 wt.% Y and Mg-2.2 wt.% Y have been carried out in compression. The experimental data has been modelled using the elastoplastic self-consistent methodology in order to determine the critical resolved shear stress for basal slip, second-order 〈c + 〉 pyramidal slip and {101̄2} twinning. It was found that the addition of Y strengthens all three of the deformation modes examined. However, increasing the Y concentration from 0.5% to 2.2% showed no additional hardening in the basal slip and {101̄2} twinning modes, indicating that solute strengthening of these deformation modes is already exhausted by a concentration of 0.5% Y. Second-order pyramidal slip showed additional solute hardening at the higher concentration. © 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of flow stress and microstructure for wrought magnesium alloy AZ31 was characterised using torsion and compression testing. Temperatures ranging between 300°C and 450°C and strain rates between 0.001s-1 and 1s-1, were employed. Constitutive equations were developed for the flow stress at a strain of 1.0 for torsion, and 0.6 for compression. The flow stress was found to be strongly dependent on deformation mode at low strains. This can be explained in terms of the influence of the deformation accommodating processes of prismatic slip and dynamic recrystallisation (DRX). At higher strains, when the change in flow stress with strain is lower, the flow stress was relatively insensitive to deformation mode. Optical microscopy carried out on torsion samples quenched after twisting to strains between 0.2 and 2 revealed dynamically recrystallised (DRX) grains situated on pre-existing grain boundaries. The average grain size was reduced from 22.5μm down to 7.3 μm after a strain of 2, with the initial grain size being halved after a strain of 0.5.